
辽宁省鞍山市岭沟中学2020年高二数学文联考试题含解析.docx
6页辽宁省鞍山市岭沟中学2020年高二数学文联考试题含解析一、 选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有是一个符合题目要求的1. 设一组数据的方差是S,将这组数据的每个数都乘以10,所得到的一组新数据的方差是( )A. 0.1 B. C.10 D.100参考答案:D略2. 准线为x=2的抛物线的标准方程是( ) A. y2=﹣4x B. y2=﹣8x C. y2=4x D. y2=8x参考答案:B3. 在一次班级聚会上,某班到会的女同学比男同学多6人,从这些同学中随机挑选一人表演节目.若选到女同学的概率为,则这班参加聚会的同学的人数为( )A.12 B.18 C.24 D.32参考答案:B4. 等于 ( ) A. B. C. D.参考答案:B略5. 设连续掷两次骰子得到的点数分别为、,则直线与圆相交的概率是( ) A. B. C. D.参考答案:C6. 如图,在正方体ABCD﹣A1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与直线C1D1的距离相等,则动点P的轨迹所在的曲线是( )A.直线 B.圆 C.双曲线 D.抛物线参考答案:D【考点】抛物线的定义;棱柱的结构特征.【分析】由线C1D1垂直平面BB1C1C,分析出|PC1|就是点P到直线C1D1的距离,则动点P满足抛物线定义,问题解决.【解答】解:由题意知,直线C1D1⊥平面BB1C1C,则C1D1⊥PC1,即|PC1|就是点P到直线C1D1的距离,那么点P到直线BC的距离等于它到点C1的距离,所以点P的轨迹是抛物线.故选D.7. 函数是减函数的区间为 ( )A.(0,2) B. C. D. 参考答案:A8. 定义在上的函数满足,,则不等式的解集为( )A.(e,+∞) B.(1,+∞) C. D.(1, e) 参考答案:A9. 已知椭圆,则( )A.C1与C2顶点相同 B.C1与C2长轴长相同C.C1与C2短轴长相同 D.C1与C2焦距相等参考答案:D10. 阅读如图程序框图,运行相应的程序,则输出s的值为( ) A.1B.10C.90D.720参考答案:D二、 填空题:本大题共7小题,每小题4分,共28分11. 从装有个球(其中个白球,1个黑球)的口袋中取出个球(),共有种取法,在这种取法中,可以分为两类:一类是取出的个球全部为白球,另一类是取出的m个球中有1个黑球,共有种取法,即有等式:成立.试根据上述思想可得 (用组合数表示)参考答案: 略12. 函数的极小值点为_____________.参考答案:略13. 以下四个关于圆锥曲线的命题中真命题的序号为 . ①设A、B为两个定点,k为正常数,,则动点P的轨迹为椭圆; ②双曲线与椭圆有相同的焦点; ③若方程的两根可分别作为椭圆和双曲线的离心率,则; ④到定点及定直线的距离之比为的点的轨迹方程为. 参考答案:②③略14. 一个袋中装有6个红球和4个白球(这10个球各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第二次摸出红球的概率为 .参考答案:【考点】CF:几何概型.【分析】首先第一次摸出红球为事件A,第二次摸出红球为事件B,分别求出P(A),P(AB),利用条件概率公式求值.【解答】解:设第一次摸出红球为事件A,第二次摸出红球为事件B,则P(A)=,P(AB)=.∴P(B|A)=.故答案为:15. 定义在上的函数满足.若当时,,则当时,=_________ ______ ; 参考答案:略16. 已知正数x,y满足x+8y=xy,则x+2y的最小值为 .参考答案:18【考点】基本不等式.【分析】将x+8y=xy,转化为+=1,再由x+2y=(x+y)(+)展开后利用基本不等式可求出x+2y的最小值.【解答】解:∵正数x,y满足x+8y=xy,∴+=1,则x+2y=(x+2y)(+)=++10≥2+10=18,当且仅当=时”=“成立,故答案为:18.17. 已知函数f(x)=axlnx,x∈(0,+∞),其中a为实数,f′(x)为f(x)的导函数,若f′(1)=3,则a的值为 .参考答案:3【考点】导数的运算.【分析】根据导数的运算法则求导,再代入值计算即可.【解答】解:∵f′(x)=a(1+lnx),f′(1)=3,∴a(1+ln1)=3,解得a=3,故答案为:3.三、 解答题:本大题共5小题,共72分。
解答应写出文字说明,证明过程或演算步骤18. (本小题12分)数列是等差数列、数列是等比数列已知,点在直线上1)求通项公式、;(2)若,求的值参考答案:(1)把点代入直线得:即:,所以,,又,所以. …………………3分又因为,所以. …………………5分(2)因为,所以, ? ……………………7分又, ② …………………9分[来源:学?— ②得: …………………11分所以, ……………………12分19. 已知函数 .(I)当时,求函数f(x)的单调递增区间;(Ⅱ) 当时,函数在区间上存在实数,使得成立,求实数的取值范围.参考答案:略20. 已知函数f(x)=ax2﹣ex(a∈R)(Ⅰ)当a=1时,判断函数f(x)的单调区间并给予证明;(Ⅱ)若f(x)有两个极值点x1,x2(x1<x2),证明:﹣<f(x1)<﹣1.参考答案:【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(Ⅰ)a=1时,f(x)=x2﹣ex,f′(x)=2x﹣ex,f″(x)=2﹣ex,利用导数研究其单调性可得当x=ln2时,函数f′(x)取得最大值,f′(ln2)=2ln2﹣2<0,即可得出.(II)f(x)有两个极值点x1,x2(x1<x2),可得f′(x)=2ax﹣ex=0有两个实根x1,x2(x1<x2),由f″(x)=2a﹣ex=0,得x=ln2a.f′(ln2a)=2aln2a﹣2a>0,得ln2a>1,解得2a>e.又f′(0)=﹣1<0,f′(1)=2a﹣e>0,可得0<x1<1<ln2a,进而得出.【解答】(Ⅰ)解:a=1时,f(x)=x2﹣ex,f′(x)=2x﹣ex,f″(x)=2﹣ex,令f″(x)>0,解得x<ln2,此时函数f′(x)单调递增;令f″(x)<0,解得x>ln2,此时函数f′(x)单调递减.∴当x=ln2时,函数f′(x)取得最大值,f′(ln2)=2ln2﹣2<0,∴函数f(x)在R上单调递减.(Ⅱ)证明:f(x)有两个极值点x1,x2(x1<x2),∴f′(x)=2ax﹣ex=0有两个实根x1,x2(x1<x2),由f″(x)=2a﹣ex=0,得x=ln2a.f′(ln2a)=2aln2a﹣2a>0,得ln2a>1,解得2a>e.又f′(0)=﹣1<0,f′(1)=2a﹣e>0,∴0<x1<1<ln2a,由f′(x1)==0,可得,f(x1)===(0<x1<1).∴可知:x1是f(x)的极小值点,∴f(x1)<f(0)=﹣1.f(x1)>=﹣2ax1>.21. 如图,已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,焦距为2,过点F2作直线l交椭圆于M、N两点,△F1MN的周长为8.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l分别交直线y=x,y=﹣x于P,Q两点,求的取值范围.参考答案:【分析】(Ⅰ)由椭圆的焦距为2,过点F2作直线l交椭圆于M、N两点,△F1MN的周长为8,列出方程组求出a,b,由此能求出椭圆方程.(Ⅱ)设直线l的方程为x=my+1,联立,得:(3m2+4)y2+6my﹣9=0,由此利用韦达定理、弦长公式、三角形面积公式,结合已知条件能求出的取值范围.【解答】解:(Ⅰ)∵椭圆C: +=1(a>b>0)的左、右焦点分别为F1、F2,焦距为2,过点F2作直线l交椭圆于M、N两点,△F1MN的周长为8.∴,解得a=2,b=,c=1,∴椭圆方程为.(Ⅱ)设直线l的方程为x=my+1,联立,消去x,整理,得:(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),则,,设P(x3,y3),N(x4,y4),联立,得,同理,|PQ|==,∴==,当0≤m2≤4时, =∈[0,],当m2>4时, =∈(0,),∴的取值范围是[0,]. 22. (12分)设函数f(x)=?,其中=(cosx,sin2x),=(2cosx,1).(1)求函数f(x)的单调增区间;(2)在△ABC中,a、b、c分别是角A、B、C的对边,f(A)=2,a=,b+c=3,求△ABC的面积.参考答案:【考点】余弦定理;平面向量数量积的运算;两角和与差的正弦函数;正弦函数的单调性.【分析】(1)由和的坐标,利用平面向量的数量积运算法则表示出?,利用二倍角的余弦函数公式化简,再利用特殊角的三角函数值及两角和与差的正弦函数公式化为一个角的正弦函数,由正弦函数的单调递增区间为[2kπ﹣,2kπ+]列出关于x的不等式,求出不等式的解集可得函数f(x)的递增区间;(2)由f(A)=2,把x=A代入化简后的函数f(x)的解析式中求出的函数值等于2,利用特殊角的三角函数值求出A的度数,由a和cosA的值,利用余弦定理列出关于b和c的关系式,与已知b+c的值联立可得bc的值,再由bc及sinA的值,利用三角形的面积公式即可求出三角形ABC的面积.【解答】解:(1)∵=(cosx, sin2x),=(2cosx,1),∴f(x)=?=2cos2x+sin2x,(2分)=cos2x+sin2x+1=2sin(2x+)+1,…当2kπ﹣<2x+<2kπ+(k∈Z),即kπ﹣<x<kπ+(k∈Z)时,f(x)单调递增,…则f(x)的单调增区间是(kπ﹣,kπ+)(k∈Z);…(6分)(包含或不包含区间端点均可,但要前后一致).(2)∵f(A)=2sin(2A+)+1=2,0<A<π,…(7分)∴2A+=,即A=,…(9分),又a=,由余弦定理a2=b2+c2﹣2bccosA得:3=b2+c2﹣bc=(b+c)2﹣3bc,…(10分)把b+c=3代入得:bc=2,…(12分)所以△ABC的面积为S△ABC=bcsinA=×2×=.…(13分)【点评】此题考查了余弦定理,平面向量的数量积运算,二倍角的余弦函数公式,两角和与差的正弦函数公式,正弦函数的单调性,以及三角形的面积公式,熟练掌握公式及定理是解本题的关键.。












