交通流理论第四章.doc
18页第四章 跟驰理论与加速度干扰本章将主要讨论单车道情况下的车辆跟驰现象,介绍跟驰理论,建立相应的跟驰理论模型,最后简要介绍一下加速度干扰问题跟驰理论是运用动力学方法研究在限制超车的单车道上,行驶车队中前车速度的变化引起的后车反应车辆跟驰行驶是车队行驶过程中一种很重要的现象,对其研究有助于理解交通流的特性跟驰理论所研究的参数之一就是车辆在给定速度下跟驰行驶时的平均车头间距,平均车头间距则可以用来估计单车道的通行能力在对速度—间距关系的研究中,单车道通行能力的估计基本上都是基于如下公式: (4—1)式中:——单车道通行能力(veh/h);——速度(km/h);——平均车头间距(m)研究表明,速度—间距的关系可以由下式表示: (4—2)式中系数、、可取不同的值,其物理意义如下:——车辆长度,; ——反应时间,;——跟驰车辆最大减速度的二倍之倒数附加项保证了足够的空间,使得头车在紧急停车的情况下跟驰车辆不与之发生碰撞,的经验值可近似取为0.023s2/英尺。
一般情况下是非线性的,对于车速恒定(或近似恒定)、车头间距相等的交通流,的近似计算公式可取为: (4—3)式中:、——分别为跟车和头车的最大减速度跟驰理论除了用于计算平均车头间距以外,还可用于从微观角度对车辆跟驰现象进行分析,近似得出单车道交通流的宏观特性总之,跟驰理论是连接车辆个体行为与车队宏观特性及相应流量、稳定性的桥梁第一节 线性跟驰模型的建立单车道车辆跟驰理论认为,车头间距在100~125m以内时车辆间存在相互影响分析跟驰车辆驾驶员的反应,可将反应过程归结为以下三个阶段:感知阶段:驾驶员通过视觉搜集相关信息,包括前车的速度及加速度、车间距离(前车车尾与后车车头之间的距离,不同于车头间距)、相对速度等;决策阶段:驾驶员对所获信息进行分析,决定驾驶策略;控制阶段:驾驶员根据自己的决策和头车及道路的状况,对车辆进行操纵控制线性跟驰模型是在对驾驶员反应特性分析的基础上,经过简化得到的一、线性跟驰模型的建立跟驰模型实际上是关于反应—刺激的关系式,用方程表示为: 反应 =·刺激 (4—4)式中为驾驶员对刺激的反应系数,称为灵敏度或灵敏系数。
驾驶员接受的刺激是指其前面引导车的加速或减速行为以及随之产生的两车之间的速度差或车间距离的变化;驾驶员对刺激的反应是指根据前车所做的加速或减速运动而对后车进行的相应操纵及其效果 线性跟驰模型相对较简单,图4—1为建立线性跟驰模型的示意图d2d1n车开始减速位置Ln+1车的制动距离T时间内n+1车行驶过的距离d3n车停车位置xn(t)xn+1(t)s (t)n+1nn+1n+1nn车的制动距离图4—1 线性跟驰模型示意图图中各参数意义如下: ——时刻车辆间的车头间距;——反应时间内车行驶的距离; ——时刻车的位置; ——时刻车的位置; ——反应时间或称反应迟滞时间; ——车的制动距离;——车的制动距离;——停车安全距离从图中可以得到: (4—5) (4—6)假设两车的制动距离相等,即,则有 (4—7)由式(4—5)和式(4—6)可得 (4—8)两边对求导,得到 (4—9)也即 1,2,3,… (4—10)或写成 1,2,3,… (4—11) 其中。
与式(4—4)对比,可以看出式(4—11)是对刺激—反应方程的近似表示:刺激为两车的相对速度;反应为跟驰车辆的加速度式(4—9)是在前导车刹车、两车的减速距离相等以及后车在反应时间内速度不变等假定下推导出来的实际的情况要比这些假定复杂得多,比如刺激可能是由前车加速引起的,而两车在变速行驶过程中驶过的距离也可能不相等为了考虑一般的情况,通常把式(4—10)或式(4—11)作为线性跟驰模型的形式,其中不一定取值为,也不再理解为灵敏度或灵敏系数,而看成与驾驶员动作强度相关的量,称为反应强度系数,量纲为二、车辆跟驰行驶过程的一般表示跟驰理论的一般形式可用传统控制理论的框图表示,见图4—2a式(4—11)所示的线性跟驰模型表示为图4—2b,图中驾驶员行为由反应时间和反应强度系数代替完善的跟驰理论应包括一系列方程,以便建模描述车辆及道路的动态特性、驾驶员的生理心理特性以及车辆间的配合命令输出跟驰车辆状态车辆的动态特性反馈循环驾驶员感知和信息搜集决策与控制过程头车状态误差图4—2a 车辆跟驰框图表示加速命令跟驰车辆速度综合累计驾驶员反应时间反应强度系数头车速度图4—2b 线性跟驰模型框图表示第二节 稳定性分析本节讨论方程(4—10)所示线性跟驰模型的两类波动稳定性:局部稳定性和渐进稳定性。
局部稳定性:关注跟驰车辆对它前面车辆运行波动的反应,即关注车辆间配合的局部行为渐进稳定性:关注车队中每一辆车的波动特性在车队中的表现,即车队的整体波动特性,如车队头车的波动在车队中的传播一、局部稳定性根据研究,针对(、参数的意义同前)取不同的值,跟驰行驶两车的运动情况可以分为以下四类:a) 时,车头间距不发生波动;b) 时,车头间距发生波动,但振幅呈指数衰减;c) 时,车头间距发生波动,振幅不变;d) 时,车头间距发生波动,振幅增大对于的情况,利用计算机模拟的办法给出了相关运动参数的变化曲线(其中反应时间,),如图4—3模拟过程中假定头车的加速和减速性能是理想的,头车采取恒定的加速度和减速度图中实线代表头车运动参数的变化,虚线代表跟驰车辆运动参数的变化,其中的“速度变化”是指头车和跟驰车辆分别相对于初始速度的变化值,即每一时刻的速度与初始速度之差图4—4中给出了另外四个不同值的车头间距变化图,分别取阻尼波动、恒幅波动和增幅波动几种情况的值加 速 度(m2/s)速度变化(m/s)相对速度(m/s)车头间距(m)2.41.81.20.60-0.6-1.2-1.80-0.6-1.2-1.8-2.4-3.0-3.61.20.60.0-0.6-1.2-1.8-2.4-3.0-3.62118150 2 4 6 8 10 12 14 16 18 20图4—3 头车加速度波动方式及对两车运动的影响时间车头间距 图4—4 不同C值对应的车头间距变化对于一般情况下的跟驰现象(不一定为车队启动过程或刹车过程),如果跟驰车辆的初始速度和最终速度分别为和,那么有 (4—12)式中:——跟驰车辆的加速度。
从方程(4—10)我们得到也即 (4—13)式中:、——分别为头车和跟驰车辆的速度; ——车头间距变化量时,车头间距以非波动形式变化,从式(4—13)可知车速从变为时其变化量为如果头车停车,则最终速度,车头间距的总变化量为,因此跟驰车辆为了不发生碰撞,车间距离最小值必须为,相应的车头间距为(为车辆长度)为了使车头间距尽可能小,应取尽可能大的值,其理想值为二、渐进稳定性在讨论了方程(4—10)所示线性跟驰模型的局部稳定性之后,下面通过分析一列运行的车队(头车除外)来讨论其渐进稳定性描述一列长度为的车队的方程为(假设车队中各驾驶员反应强度系数值相同): 1,2,3,……, (4—14)无论车头间距为何初始值,如果发生增幅波动,那么在车队后部的某一位置必定发生碰撞,方程(4—14)的数值解可以确定碰撞发生的位置下面我们分析判断波动是增幅还是衰减的标准,也即渐进稳定性标准根据研究,一列行驶的车队仅当< 0.5~0.52(一般取0.5)时才是渐进稳定的,即车队中车辆波动的振幅呈衰减趋势渐进稳定性的判定标准把两个参数确定的区域分成了稳定和不稳定两部分,如图4—5所示。
由此可知,保证局部稳定性的同时也确保了渐进稳定性 稳定不稳定λ(s-1)反应时间(s)1.000.750.500.250 0.5 1.0 1.5 2.0图4—5 渐进稳定性区域为了说明车队的渐进稳定性,下面我们通过图示给出两组利用计算机模拟得到的数值计算结果图4—6给出了一列8辆车组成的车队中相邻车辆车头间距与时间的关系,分别取0.368,0.5,0.75头车的初始波动方式与图4—3所示情况相同,即先缓慢减速再加速至初始速度(加速度绝对值相等),因此加速度对时间的积分为零时车头间距均为21m第一种情况0.368(),为非波动状态第二种情况0.5 (即渐进稳定性的限值),此时出现高阻尼波动,这说明即使是在渐近稳定性标准的极限处,波动振幅也将随着波动在车队的传播而衰减,即波动被阻尼第三种情况0.75,图中很好地说明了波动的不稳定性时间 (s)车头间距(m)20181614201816141220181614120 5 10 15 20 25 30 35 401-23-45-67-8C = 1/e = 0.3681-23-45-67-8C= 0.501-23-45-6C = 0.75图4—6 线性跟驰模型车队中车头间距随时间的变化图4—7。

卡西欧5800p使用说明书资料.ppt
锂金属电池界面稳定化-全面剖析.docx
SG3525斩控式单相交流调压电路设计要点.doc
话剧《枕头人》剧本.docx
重视家风建设全面从严治党治家应成为领导干部必修课PPT模板.pptx
黄渤海区拖网渔具综合调查分析.docx
2024年一级造价工程师考试《建设工程技术与计量(交通运输工程)-公路篇》真题及答案.docx
【课件】Unit+3+Reading+and+Thinking公开课课件人教版(2019)必修第一册.pptx
嵌入式软件开发流程566841551.doc
生命密码PPT课件.ppt
爱与责任-师德之魂.ppt
制冷空调装置自动控制技术讲义.ppt


