【素材】Module 1 文本 新能源(外研).doc
6页新能源太阳能太阳能一般指太阳光的辐射能量太阳能的利用有被动式利用(光热转换)和光电转换两种方式太阳能发电一种新兴的可再生能源利用方式广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等等利用太阳能的方法主要有:·使用太阳电池,通过光电转换把太阳光中包含的能量转化为电能 ·使用太阳能热水器,利用太阳光的热量加热水 ·利用太阳光的热量加热水,并利用热水发电 ·利用太阳能进行海水淡化 现在,太阳能的利用还不很普及,利用太阳能发电还存在成本高、转换效率低的问题,但是太阳电池在为人造卫星提供能源方面得到了应用目前,全球最大的屋顶太阳能面板系统位于德国南部比兹塔特(Buerstadt),面积为四万平方米,每年的发电量为450万千瓦日本为了达成京都议定书的二氧化碳减量要求,全日本都普设太阳能光电板,位于日本中部的长野县饭田市,居民在屋顶设置太阳能光电板的比率甚至达2%,堪称日本第一太阳能可分为2种:1.太阳能光伏光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成由于没有活动的部分,故可以长时间操作而不会导致任何损耗简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋照明,并为电网供电。
光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统2.太阳热能现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料核能首先要认识核能核能是通过转化其质量从原子核释放的能量,符合阿尔伯特·爱因斯坦的方程E=mc²,其中E=能量,m=质量,c=光速常量核能通过三种核反应之一释放:·核裂变,打开原子核的结合力 ·核聚变,原子的粒子熔合在一起 ·核衰变,自然的慢得多的裂变形式 核聚变是指由质量小的原子,主要是指氘或氚,在一定条件下(如超高温和高压),发生原子核互相聚合作用,生成新的质量更重的原子核,并伴随着巨大的能量释放的一种核反应形式原子核中蕴藏巨大的能量,原子核的变化(从一种原子核变化为另外一种原子核)往往伴随着能量的释放如果是由重的原子核变化为轻的原子核,叫核裂变,如原子弹爆炸;如果是由轻的原子核变化为重的原子核,叫核聚变,如太阳发光发热的能量来源。
相比核裂变,核聚变几乎不会带来放射性污染等环境问题,而且其原料可直接取自海水中的氘,来源几乎取之不尽,是理想的能源方式 目前人类已经可以实现不受控制的核聚变,如氢弹的爆炸但是要想能量可被人类有效利用,必须能够合理的控制核聚变的速度和规模,实现持续、平稳的能量输出科学家正努力研究如何控制核聚变,但是现在看来还有很长的路要走 目前主要的几种可控核聚变方式: 超声波核聚变 激光约束(惯性约束)核聚变 磁约束核聚变(托卡马克) 核聚变 比原子弹威力更大的核武器—氢弹,就是利用核聚变来发挥作用的核聚变的过程与核裂变相反,是几个原子核聚合成一个原子核的过程只有较轻的原子核才能发生核聚变,比如氢的同位素氘(dao)、氚(chuan)等核聚变也会放出巨大的能量,而且比核裂变放出的能量更大太阳内部连续进行着氢聚变成氦过程,它的光和热就是由核聚变产生的 核聚变能释放出巨大的能量,但目前人们只能在氢弹爆炸的一瞬间实现非受控的人工核聚变而要利用人工核聚变产生的巨大能量为人类服务,就必须使核聚变在人们的控制下进行,这就是受控核聚变实现受控核聚变具有极其诱人的前景不仅因为核聚变能放出巨大的能量,而且由于核聚变所需的原料——氢的同位素氘可以从海水中提取。
经过计算,1升海水中提取出的氘进行核聚变放出的能量相当于100升汽油燃烧释放的能量全世界的海水几乎是“取之不尽”的,因此受控核聚变的研究成功将使人类摆脱能源危机的困扰但是人们现在还不能进行受控核聚变,这主要是因为进行核聚变需要的条件非常苛刻发生核聚变需要在1亿度的高温下才能进行,因此又叫热核反应可以想象,没有什么材料能经受得起1亿度的高温此外还有许多难以想象的困难需要去克服尽管存在着许多困难,人们经过不断研究已取得了可喜的进展科学家们设计了许多巧妙的方法,如用强大的磁场来约束反应,用强大的激光来加热原子等可以预计,人们最终将掌握控制核聚变的方法,让核聚变为人类服务核能发电 nuclear electric power generation 核能→水和水蒸气的内能→发电机转子的机械能→电能利用核反应堆中核裂变所释放出的热能进行发电的方式它与火力发电极其相似只是以核反应堆及蒸汽发生器来代替火力发电的锅炉,以核裂变能代替矿物燃料的化学能除沸水堆外(见轻水堆),其他类型的动力堆都是一回路的冷却剂通过堆心加热,在蒸汽发生器中将热量传给二回路或三回路的水,然后形成蒸汽推动汽轮发电机沸水堆则是一回路的冷却剂通过堆心加热变成70个大气压左右的饱和蒸汽,经汽水分离并干燥后直接推动汽轮发电机。
简史 核能发电的历史与动力堆的发展历史密切相关动力堆的发展最初是出于军事需要1954年,苏联建成世界上第一座装机容量为 5兆瓦(电)的核电站英、美等国也相继建成各种类型的核电站到1960年,有5个国家建成20座核电站,装机容量1279兆瓦(电)由于核浓缩技术的发展,到1966年,核能发电的成本已低于火力发电的成本核能发电真正迈入实用阶段1978年全世界22个国家和地区正在运行的30兆瓦(电)以上的核电站反应堆已达200多座,总装机容量已达107776兆瓦(电)80年代因化石能源短缺日益突出,核能发电的进展更快到1991年,全世界近30个国家和地区建成的核电机组为423套,总容量为3.275亿千瓦,其发电量占全世界总发电量的约16%世界上第一座核电站—苏联奥布宁斯克核电站. 中国大陆的核电起步较晚,80年代才动工兴建核电站中国自行设计建造的30万千瓦(电)秦山核电站在1991年底投入运行大亚湾核电站正加紧施工 核能发电原理 核能发电的能量来自核反应堆中可裂变材料(核燃料)进行裂变反应所释放的裂变能裂变反应指铀-235、钚-239、铀-233等重元素在中子作用下分裂为两个碎片,同时放出中子和大量能量的过程。
反应中,可裂变物的原子核吸收一个中子后发生裂变并放出两三个中子若这些中子除去消耗,至少有一个中子能引起另一个原子核裂变,使裂变自持地进行,则这种反应称为链式裂变反应实现链式反应是核能发电的前提 要用反应堆产生核能,需要解决以下4个问题:①为核裂变链式反应提供必要的条件,使之得以进行②链式反应必须能由人通过一定装置进行控制失去控制的裂变能不仅不能用于发电,还会酿成灾害③裂变反应产生的能量要能从反应堆中安全取出④裂变反应中产生的中子和放射性物质对人体危害很大,必须设法避免它们对核电站工作人员和附近居民的伤害利用核能的最终目标是要实现受控核聚变裂变时靠原子核分裂而释出能量聚变时则由较轻的原子核聚合成较重的较重的原子核而释出能量最常见的是由氢的同位素氘(读"刀",又叫重氢)和氚(读"川",又叫超重氢)聚合成较重的原子核如氦而释出能量 核聚变较之核裂变有两个重大优点一是地球上蕴藏的核聚变能远比核裂变能丰富得多据测算,每升海水中含有0.03克氘,所以地球上仅在海水中就有45万亿吨氘1升海水中所含的氘,经过核聚变可提供相当于300升汽油燃烧后释放出的能量地球上蕴藏的核聚变能约为蕴藏的可进行核裂变元素所能释出的全部核裂变能的1000万倍,可以说是取之不竭的能源。
至于氚,虽然自然界中不存在,但靠中子同锂作用可以产生,而海水中也含有大量锂 第二个优点是既干净又安全因为它不会产生污染环境的放射性物质,所以是干净的同时受控核聚变反应可在稀薄的气体中持续地稳定进行,所以是安全的 目前实现核聚变已有不少方法最早的著名方法是"托卡马克"型磁场约束法它是利用通过强大电流所产生的强大磁场,把等离子体约束在很小范围内以实现上述三个条件虽然在实验室条件下已接近于成功,但要达到工业应用还差得远按照目前技术水平,要建立托卡马克型核聚变装置,需要几千亿美元 另一种实现核聚变的方法是惯性约束法惯性约束核聚变是把几毫克的氘和氚的混合气体或固体,装入直径约几毫米的小球内从外面均匀射入激光束或粒子束,球面因吸收能量而向外蒸发,受它的反作用,球面内层向内挤压(反作用力是一种惯性力,靠它使气体约束,所以称为惯性约束),就像喷气飞机气体往后喷而推动飞机前飞一样,小球内气体受挤压而压力升高,并伴随着温度的急剧升高当温度达到所需要的点火温度(大概需要几十亿度)时,小球内气体便发生爆炸,并产生大量热能这种爆炸过程时间很短,只有几个皮秒(1皮等于1万亿分之一)如每秒钟发生三四次这样的爆炸并且连续不断地进行下去,所释放出的能量就相当于百万千瓦级的发电站。
原理上虽然就这么简单,但是现有的激光束或粒子束所能达到的功率,离需要的还差几十倍、甚至几百倍,加上其他种种技术上的问题,使惯性约束核聚变仍是可望而不可及的 尽管实现受控热核聚变仍有漫长艰难的路程需要我们征服,但其美好前景的巨大诱惑力,正吸引着各国科学家在奋力攀登风能风能是太阳辐射下流动所形成的风能与其他能源相比,具有明显的优势,它蕴藏量大,是水能的10倍,分布广泛,永不枯竭,对交通不便、远离主干电网的岛屿及边远地区尤为重要风力发电,是当代人利用风能最常见的形式,自19世纪末,丹麦研制成风力发电机以来,人们认识到石油等能源会枯竭,才重视风能的发展1977年,联邦德国在著名的风谷--石勒苏益格-荷尔斯泰因州的布隆坡特尔建造了一个世界上最大的发电风车该风车高150米,每个浆叶长40米,重18吨,用玻璃钢制成到1994年,全世界的风力发电机装机容量已达到300万千瓦左右,每年发电约50亿千瓦时海洋能海洋能指蕴藏于海水中的各种可再生能源,包括潮汐能、波浪能、海流能、温差能、盐差能等这些能源都具有可再生性和不污染环境等优点,是一项亟待开发利用的具有战略意义的新能源波浪发电,据科学家推算,地球上波浪蕴藏的电能高达90万亿度。
目前,海上导航浮标和灯塔已经用上了波浪发电机发出的电来照明大型波浪发电机组也已问世我国在也对波浪发电进行研究和试验,并制成了供航标灯使用的发电装置潮汐发电,据世界动力会议估计,到2020年,全世界潮汐发电量将达到1000-3000亿千瓦世界上最大的潮汐发电站是法国北部英吉利海峡上的朗斯河口电站,发电能力24万千瓦,已经工作了30多年我国在浙江省建造了江厦潮汐电站,总容量达到3000千瓦生物质能生物质能来源于生物质,也是太阳能以化学能形式贮存于生物中的一种能量形式,它直接或间接地来源于植物的光合作用生物质能是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态或气态的燃料地球上的生物质能资源较为丰富,而且是一种无害的能源地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,但目前的利用率不到3%地热能地球内部热源可来自重力分异、潮汐磨擦、化学反应和放射性元素衰变释放的能量等放射性热能是地球主要热源我国地热资源丰富,分布广泛,已有5500处地热点,地热田45个,地热资源总量约320万兆瓦氢能在众多新能源中,氢能以其重量轻、无污染、热值高、应用面广等独特优点脱颖而出,将成为21世纪的理想能源。
氢能可以作飞机、汽车的燃料。

卡西欧5800p使用说明书资料.ppt
锂金属电池界面稳定化-全面剖析.docx
SG3525斩控式单相交流调压电路设计要点.doc
话剧《枕头人》剧本.docx
重视家风建设全面从严治党治家应成为领导干部必修课PPT模板.pptx
黄渤海区拖网渔具综合调查分析.docx
2024年一级造价工程师考试《建设工程技术与计量(交通运输工程)-公路篇》真题及答案.docx
【课件】Unit+3+Reading+and+Thinking公开课课件人教版(2019)必修第一册.pptx
嵌入式软件开发流程566841551.doc
生命密码PPT课件.ppt
爱与责任-师德之魂.ppt
制冷空调装置自动控制技术讲义.ppt


