好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

高中物理竞赛教程:2.1.1库仑定律和电场强度Word版含解析.docx

19页
  • 卖家[上传人]:杨***
  • 文档编号:282000686
  • 上传时间:2022-04-25
  • 文档格式:DOCX
  • 文档大小:53.98KB
  • / 19 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    •     高中物理竞赛教程2.1.1库仑定律和电场强度Word版含解析    §1、1 库仑定律和电场强度1.1.1、电荷守恒定律大量实验证明:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,正负电荷的代数和任何物理过程中始终保持不变我们熟知的摩擦起电就是电荷在不同物体间的转移,静电感应现象是电荷在同一物体上、不同部位间的转移此外,液体和气体的电离以及电中和等实验现象都遵循电荷守恒定律1.1.2、库仑定律真空中,两个静止的点电荷1q 和2q 之间的相互作用力的大小和两点电荷电量的乘积成正比,和它们之间距离r 的平方成正比;作用力的方向沿它们的连线,同号相斥,异号相吸221r q q kF =式中k 是比例常数,依赖于各量所用的单位,在国际单位制(SI )中的数值为:229/109C m N k ??=(常将k 写成041πε=k 的形式,0ε是真空介电常数,22120/1085.8m N C ??=-ε)库仑定律成立的条件,归纳起来有三条:(1)电荷是点电荷;(2)两点电荷是静止或相对静止的;(3)只适用真空条件(1)很容易理解,但我们可以把任何连续分布的电荷看成无限多个电荷元(可视作点电荷)的集合,再利用叠加原理,求得非点电荷情况下,库仑力的大小。

      由于库仑定律给出的是一种静电场分布,因此在应用库仑定律时,可以把条件(2)放宽到静止源电荷对运动电荷的作用,但不能推广到运动源电荷对静止电荷的作用,因为有推迟效应关于条件(3),其实库仑定律不仅适用于真空,也适用于导体和介质当空间有了导体或介质时,无非是出现一些新电荷——感应电荷和极化电荷,此时必须考虑它们对源电场的影响,但它们也遵循库仑定律1.1.3、电场强度电场强度是从力的角度描述电场的物理量,其定义式为q FE =式中q 是引入电场中的检验电荷的电量,F 是q 受到的电场力借助于库仑定律,可以计算出在真空中点电荷所产生的电场中各点的电场强度为22r Qk q r Qqk q F E ===式中r 为该点到场源电荷的距离,Q 为场源电荷的电量1.1.4、场强的叠加原理在若干场源电荷所激发的电场中任一点的总场强,等于每个场源电荷单独存在时在该点所激发的场强的矢量和原则上讲,有库仑定律和叠加原理就可解决静电学中的全部问题 例1、如图1-1-1(a )所示,在半径为R 、体电荷密度为ρ的均匀带电球体内部挖去半径为R '的一个小球,小球球心O '与大球球心O 相距为a ,试求O '的电场强度,并证明空腔内电场均匀。

      分析: 把挖去空腔的带电球看作由带电大球()ρ,R 与带异号电的小球()ρ-',R 构成由公式求出它们各自在O '的电场强度,再叠加即得0'E 这是利用不具有对称性的带电体的特点,把它凑成由若干具有对称性的带电体组成,使问题得以简化 在小球内任取一点P ,用同样的方法求出P E ,比较P E 和0'E ,即可证明空腔内电场是均匀的采用矢量表述,可使证明简单明确解: 由公式可得均匀带电大球(无空腔)在O '点的电场强度大球E ,a k R kQa Eo ρπ343,=='大球,方向为O 指向O '同理,均匀带异号电荷的小球 ()ρ-',R 在球心O '点的电场强度0,='o E大球所以o E o E '=',大球小球E+,ak o ρπ34='如图1-1-1(b )所示,在小球内任取一点P ,设从O 点到O '点的矢量为a ?,P O '为b ?,OP 为r ?则P 点的电场强度P E 为p p P E E E 小球大球???+=,??? ??-+=b k r k ??ρπρπ3434 ak b r k ???ρπρπ34)(34=-=可见:0E E P ??=因P 点任取,故球形空腔内的电场是均匀的。

      1.1.5、 电通量、高斯定理、图1-1-1(a )O O 'PBra图1-1-1(b )(1)磁通量是指穿过某一截面的磁感应线的总条数,其大小为θsin BS =Φ,其中θ为截面与磁感线的夹角与此相似,电通量是指穿过某一截面的电场线的条数,其大小为θ?sin ES =θ为截面与电场线的夹角高斯定量:在任意场源所激发的电场中,对任一闭合曲面的总通量可以表示为∑=i q k π?4 (041πε=k )Nm C /1085.82120-?=ε为真空介电常数式中k 是静电常量,∑i q 为闭合曲面所围的所有电荷电量的代数和由于高中缺少高等数学知识,因此选取的高斯面即闭合曲面,往往和电场线垂直或平行,这样便于电通量的计算尽管高中教学对高斯定律不作要求,但笔者认为简单了解高斯定律的内容,并利用高斯定律推导几种特殊电场,这对掌握几种特殊电场的分布是很有帮助的2)利用高斯定理求几种常见带电体的场强 ①无限长均匀带电直线的电场 一无限长直线均匀带电,电荷线密度为η,如图1-1-2(a )所示考察点P 到直线的距离为r 由于带电直线无限长且均匀带电,因此直线周围的电场在竖直方向分量为零,即径向分布,且关于直线对称。

      取以长直线为主轴,半径为r ,lP图1-1-2(a ) 图1-1-2(b )长为l 的圆柱面为高斯面,如图1-1-2(b ),上下表面与电场平行,侧面与电场垂直,因此电通量ηπππ??==??=∑kl q k l r E i 442r k E η2=②无限大均匀带电平面的电场根据无限大均匀带电平面的对称性,可以判定整个带电平面上的电荷产生的电场的场强与带电平面垂直并指向两侧,在离平面等距离的各点场强应相等因此可作一柱形高斯面,使其侧面与带电平面垂直,两底分别与带电平面平行,并位于离带电平面等距离的两侧如图1-1-3由高斯定律:∑=?=i q k S E π?42S k σπ?=4σπk E 2=S Q=σ式中σ为电荷的面密度,由公式可知,无限大均匀带电平面两侧是匀强电场 平行板电容器可认为由两块无限带电均匀导体板构成,其间场强为E ',则由场强叠加原理可知σπk E 4='③均匀带电球壳的场强有一半径为R ,电量为Q 的均匀带电球壳,如图1-1-4由于电荷分布的对称性,故不难理解球壳内外电场的分布应具有球对称性,因此可在球壳内外取同心球面为高斯面对高斯面1而言:E图1-1-312图1-1-40,0442===?=∑E q k r E i ππ?;对高斯面2:r kQE kQ q k r E i ===?=∑,4442πππ?。

      2r kQ o E R r R r ≥? ④球对称分布的带电球体的场强 推导方法同上,如图1-1-4, 对高斯面1,3332,444R kQrE Q R r k q k r E i ===?=∑πππ?;对高斯面2,22,444r kQE kQ q k r E i ===?=∑πππ?23r kQ R kQr ER r R r ≥<⑤电偶极子产生的电场真空中一对相距为l 的带等量异号电荷的点电荷系统()q q -+,,且l 远小于讨论中所涉及的距离,这样的电荷体系称为电偶极子,并且把连接两电荷的直线称为电偶极子的轴线,将电量q 与两点电荷间距l 的乘积定义为电偶极矩a.设两电荷连线中垂面上有一点P ,该点到两电荷连线的距离为r ,则P 点的场强如图1-1-5所示,其中422l r q kE E +==-+4242cos 22222l r l l r q kE E +?+==+θ32322)4(r qlk l r ql k ≈+=b.若P '为两电荷延长线上的一点,P '到两电荷连线中点的距离为r ,如图1-1-6所示,则,2,222??? ??+=??? ??-=-+l r q k E l r q kE??????????????? ??+-??? ??-=-=-+222121l r l r kq E E E ??????????? ??+-??? ??-=--2222121r l r l r qk?????+-+≈r l r l r q k11232r qlk=c.若T 为空间任意一点,它到两电荷连线的中点的距离为r ,如图1-1-7所示,则⊥ql 在T 点产生的场强分量为33sin 2r ql k r ql kE ?==⊥⊥,由//ql 在T 点产生的场强分量为图1-1-5q+r-⊥P'图1-1-6//图1-1-733////cos 22r ql k r ql kE ?==故,1cos 3232//2+=+=⊥?r ql kE E E T???δtan 21cos 2sin tan //===⊥E E例2、如图所示,在-d ≤x ≤d 的空间区域内(y ,z 方向无限延伸)均匀分布着密度为ρ的正电荷,此外均为真空(1)试求x ≤d 处的场强分布;(2)若将一质量为m ,电量为ρ-的带点质点,从x=d 处由静止释放,试问该带电质点经过过多长时间第一次到达x=0处。

      解: 根据给定区域电荷分布均匀且对称,在y 、z 方向无限伸展的特点,我们想象存在这样一个圆柱体,底面积为S ,高为2x ,左、右底面在x 轴上的坐标分别是-x 和x ,如图1-1-8所示可以判断圆柱体左、右底面处的场强必定相等,且方向分别是逆x 轴方向和顺x 轴方向再根据高斯定理,便可求出坐标为x 处的电场强度1)根据高斯定律x S k S E 242???=?ρπ坐标为x 处的场强:x k E ρπ4=(x ≤d ),x >0时,场强与x 轴同向,x <0时,场强与x 轴反向2)若将一质量为m 、电量为q -的带电质点置于此电场中,质点所受的电场力为:qx k qE F ρπ4-=-=(x ≤d )显然质点所受的电场力总是与位移x成正比,且与位移方向相反,符合准弹图1-1-8性力的特点质点在电场力的运动是简谐振动,振动的周期为q k mq k m T ρπρππ==42当质点从x=d 处静止释放,第一次达到x=0处所用的时间为q k m T T t ρπ44==  -全文完-。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.