
人教版九年级数学上册实际问题与二次函数-详解与练习(含答案).doc
14页实际问题与二次函数一、利用函数求图形面积的最值问题例1、 如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃1) 设矩形的一边长为x(米),面积为y(平方米),求y关于x的函数关系式;(2) 当x为何值时,所围成的苗圃面积最大?最大面积是多少?解:(1)设矩形的长为x(米),则宽为(18- x)(米), 根据题意,得:;又∵(2)∵中,a= -1<0,∴y有最大值,即当时,故当x=9米时,苗圃的面积最大,最大面积为81平方米例2、 如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙问如何围,才能使养鸡场的面积最大?解:设养鸡场的长为x(米),面积为y(平方米),则宽为()(米), 根据题意,得:;又∵∵中,a=<0,∴y有最大值,即当时,故当x=25米时,养鸡场的面积最大,养鸡场最大面积为平方米例3、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形. (1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少? (2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.(1)解:设剪成两段后其中一段为xcm,则另一段为(20-x)cm 由题意得: 解得: 当时,20-x=4;当时,20-x=16答:这段铁丝剪成两段后的长度分别是16厘米、4厘米。
2)不能 理由是:设第一个正方形的边长为xcm,则第二个正方形的边长为cm,围成两个正方形的面积为ycm2,根据题意,得:,∵中,a= 2>0,∴y有最小值,即当时,=12.5>12,故两个正方形面积的和不可能是12cm2.练习1、如图,正方形EFGH的顶点在边长为a的正方形ABCD的边上,若AE=x,正方形EFGH的面积为y.(1)求出y与x之间的函数关系式;(2)正方形EFGH有没有最大面积?若有,试确定E点位置;若没有,说明理由.解:∵四边形ABCD是边长为a米的正方形,∴∠A=∠D=90°,AD= a米.∵四边形EFGH为正方形,∴∠FEH=90°,EF=EH.在△AEF与△DHE中,∵∠A=∠D,∠AEF=∠DHE=90°-∠DEH,EF=EH∴△AEF≌△DHE(AAS),∴AE=DH=x米,AF=DE=(a-x)米,∴y=EF2=AE2+AF2=x2+(a-x)2=2x2-2ax+ a2,即y=2x2-2ax+ a2;(2)∵y=2x2-2ax+ a2=2(x-)2+,∴当x=时,S有最大值.故当点E是AB的中点时,面积最大.二、利用二次函数解决抛物线形建筑物问题例题1 如图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是 .图(1) 图(2).练习1某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,抛物线形状如图(1)所示.图(2)建立直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间的关系是.请回答下列问题:(1)柱子OA的高度是多少米?(2)喷出的水流距水平面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米才能使喷出的水流不至于落在池外?2.一座桥如图,桥下水面宽度AB是20米,高CD是4米.要使高为3米的船通过,则其宽度须不超过多少米.(1)如图1,若把桥看做是抛物线的一部分,建立如图坐标系.①求抛物线的解析式;②要使高为3米的船通过,则其宽度须不超过多少米?(2)如图2,若把桥看做是圆的一部分.①求圆的半径;②要使高为3米的船通过,则其宽度须不超过多少米?1.解:(1)把x=0代入抛物线的解析式得:y=,即柱子OA的高度是(2)由题意得:当x=时,y=,即水流距水平面的最大高度(3)把y=0代入抛物线得:=0,解得,x1=(舍去,不合题意),x2=故水池的半径至少要米才能使喷出的水流不至于落在池外2.(1)①设抛物线解析式为:,∵桥下水面宽度AB是20米,高CD是4米,∴A(﹣10,0),B(10,0),D(0,4),∴,解得:,∴抛物线解析式为:;②∵要使高为3米的船通过,∴,则,解得:,∴EF=10米;(2)①设圆半径r米,圆心为W,∵BW2=BC2+CW2,∴,解得:;②在RT△WGF中,由题可知,WF=14.5,WG=14.5﹣1=13.5,根据勾股定理知:GF2=WF2﹣WG2,即GF2=14.52﹣13.52=28,所以GF=,此时宽度EF=米.三、利用抛物线解决最大利润问题例题1 某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看做一次函数:y=-10x+500.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(6分)(2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元?(3分)(3)物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2 000元,那么他每月的成本最少需要多少元?(成本=进价×销售量) (3分)试题解析:(1)由题意得出: ,∵,∴当销售单价定为35元时,每月可获得最大利润. (2)由题意,得:,解这个方程得:x1=30,x2=40.∴李明想要每月获得2000元的利润,销售单价应定为30元或40元.(3)∵,∴抛物线开口向下. ∴当30≤x≤40时,W≥2000.∵x≤32,∴当30≤x≤32时,W≥2000.设成本为P(元),由题意,得:,∵k=200<0,∴P随x的增大而减小.∴当x=32时,P最小=3600.练习1.某玩具批发商销售每只进价为40元的玩具,市场调查发现,若以每只50元的价格销售,平均每天销售90只,单价每提高1元,平均每天就少销售3只.(1)平均每天的销售量y(只)与销售价x(元/只)之间的函数关系式为 ;(2)求该批发商平均每天的销售利润W(元)与销售只x(元/只)之间的函数关系式;(3)物价部门规定每只售价不得高于55元,当每只玩具的销售价为多少元时,可以获得最大利润?最大利润是多少元(1)根据题意知销售量y(只)与销售价x(元/只)之间的函数关系式为y=90-3(x-50)=-3x+240;(2)根据“总利润=每件商品的利润×销售量”可知w=(x-40)y=(x-40)(-3x+240)=-3x2+360x-9600;(3)求获得最大利润,也就是求函数w=-3x2+360x-9600的最大值.试题解析:( 1)y=90-3(x-50)即y=-3x+240; (2)w=(x-40)y=(x-40)(-3x+240)=-3x2+360x-9600;(3)当x≤60,y随x的增大而减小,当x=55时,w最大=1125所以定价为55元时,可以获得最大利润是1125元.2.为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:. 设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(1)由题意得:,∴w与x的函数关系式为:.(2),∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.3.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?(1)当时,,,∴政府这个月为他承担的总差价为600元。
2)依题意得,,,∴当时,有最大值4000.∴当销售单价定为30元时,每月可获得最大利润4000.(3)由题意得:,解得:,.,抛物线开口向下,∴结合图象可知:当时,.又,∴当时,w≥3000.设政府每个月为他承担的总差价为元,.,随的增大而减小.∴当时,有最小值500.∴销售单价定为25元时,政府每个月为他承担的总差价最少为500元.4.某文具店销售一种进价为10元/个的签字笔,物价部门规定这种签字笔的售价不得高于14元/个,根据以往经验:以12元/个的价格销售,平均每周销售签字笔100个;若每个签字笔的销售价格每提高1元,则平均每周少销售签字笔10个. 设销售价为x元/个.(1)该文具店这种签字笔平均每周的销售量为 个(用含x的式子表示);(2)求该文具店这种签字笔平均每周的销售利润w(元)与销售价x(元/个)之间的函数关系式;(3)当x取何值时,该文具店这种签字笔平均每周的销售利润最大?最大利润是多少元?(1)(220-10x);(2) 3分 5分 6分∵抛物线的开口向下,在对称轴直线x=16的左侧,随的增大而增大.8分由题意可知, 9分∴当x=14时,最大为320. ∴当x=14时,该文具店这种签字笔平均每周的销售利润最大是320元.4、 利用二次函数解决动点问题例1如图8,如图9,在平行四边形ABCD中,AD=4 cm,∠A=60°,BD⊥AD. 一动点P从A出发,以每秒1 cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD .(1) 当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;(2) 当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒1 cm的速度匀速运动,在BC上以每秒2 cm的速度匀速运动. 过Q作直线QN,使QN∥PM. 设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD所得图形的面积为S cm2 .① 求S关于t的函数关系式;② 求S的最大值.解:(1) 当点P运动2秒时,AP=2 cm,由∠A=60°,知AE=1,PE=.∴ SΔAPE=.(2) ① 当0≤t≤6时,点P与点Q都在AB上运动,设PM与AD交于点G,QN与AD交于点F,则AQ=t,AF=,QF=,AP=t+2,AG=1+,PG=.∴ 此时两平行线截。












