好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

复合函数单调性、函数奇偶性.doc

6页
  • 卖家[上传人]:ni****g
  • 文档编号:541040097
  • 上传时间:2023-04-30
  • 文档格式:DOC
  • 文档大小:227.45KB
  • / 6 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 有关复合函数单调性的定义和解题方法一、 复合函数的定义设y=f(u)的定义域为A,u=g(x)的值域为B,若AÍB,则y关于x函数的y=f[g(x)]叫做函数f与g的复合函数,u叫中间量.二、 函数的单调区间1.一次函数y=kx+b(k≠0).解 当k>0时,(-∞,+∞)是这个函数的单调增区间;当k<0时,(-∞,+∞)是这个函数的单调减区间.2.反比例函数y=(k≠0).解 当k>0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k<0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间.3.二次函数y=ax2+bx+c(a≠0).解 当a>1时(-∞,-)是这个函数的单调减区间,(-,+∞)是它的单调增区间;当a<1时(-∞,-)是这个函数的单调增区间,(-,+∞)是它的单调减区间;4.指数函数y=ax(a>0,a≠1).解 当a>1时,(-∞,+∞)是这个函数的单调增区间,当0<a<1时,(-∞,+∞)是这个函数的单调减区间.5.对数函数y=logax(a>0,a≠1).解 当a>1时,(0,+∞)是这个函数的单调增区间,当0<a<1时,(0,+∞)是它的单调减区间.三、复合函数单调性相关定理引理1 :已知函数y=f[g(x)].若u=g(x)在区间(a,b)上是增函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f[g(x)]在区间(a,b)上是增函数.(本引理中的开区间也可以是闭区间或半开半闭区间.)证明 在区间(a,b)内任取两个数x1,x2,使a<x1<x2<b.因为u=g(x)在区间(a,b)上是增函数,所以g(x1)<g(x2),记u1=g(x1),u2=g(x2)即u1<u2,且u1,u2∈(c,d).因为函数y=f(u)在区间(c,d)上是增函数,所以f(u1)<f(u2),即f[g(x1)]<f[f(x2)],故函数y=f[g(x)]在区间(a,b)上是增函数.引理2:已知函数y=f[g(x)].若u=g(x)在区间(a,b)上是减函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是减函数,那么,复合函数y=f[g(x)]在区间(a,b)上是增函数.证明 在区间(a,b)内任取两个数x1,x2,使a<x1<x2<b.因为函数u=g(x)在区间(a,b)上是减函数,所以g(x1)>g(x2),记u1=g(x1),u2=g(x2)即u1>u2,且u1,u2∈(c,d).因为函数y=f(u)在区间(c,d)上是减函数,所以f(u1)<f(u2),即f[g(x1)]<f[f(x2)],故函数y=f[g(x)]在区间(a,b)上是增函数.规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不同时,其复合函数为减函数。

      即我们所说的“同增异减”规律四、例题讲解例1 求下列函数的单调区间: y=log4(x2-4x+3)解法一:设 y=log4u,u=x2-4x+3.由 u>0, u=x2-4x+3,解得原复合函数的定义域为x<1或x>3.当x∈(-∞,1)时,u=x2-4x+3为减函数,而y=log4u为增函数,所以(-∞,1)是复合函数的单调减区间;当x∈(3,±∞)时,u=x2-4x+3为增函数y=log4u为增函数,所以,(3,+∞)是复合函数的单调增区间.解法二:u=x2-4x+3=(x-2)2-1,x>3或x<1,(复合函数定义域)x<2 (u减)解得x<1.所以x∈(-∞,1)时,函数u单调递减.由于y=log4u在定义域内是增函数,所以由引理知:u=(x-2)2-1的单调性与复合函数的单调性一致,所以(-∞,1)是复合函数的单调减区间.下面我们求一下复合函数的单调增区间.u=x2-4x+3=(x-2)2-1,x>3或x<1,(复合函数定义域)x>2 (u增)解得x>3.所以(3,+∞)是复合函数的单调增区间.例2 求下列复合函数的单调区间: y=log (2x-x2)解: 设 y=logu,u=2x-x2.由 u>0 u=2x-x2解得原复合函数的定义域为0<x<2.由于y=logu在定义域(0,+∞)内是减函数,所以,原复合函数的单调性与二次函数u=2x-x2的单调性正好相反.易知u=2x-x2=-(x-1)2+1在x≤1时单调增.由 0<x<2 (复合函数定义域) x≤1,(u增)解得0<x≤1,所以(0,1]是原复合函数的单调减区间.又u=-(x-1)2+1在x≥1时单调减,由 x<2, (复合函数定义域) x≥1, (u减)解得1≤x<2,所以[1,2)是原复合函数的单调增区间.例3 求y=的单调区间.解: 设y=,u=7-6x-x2,由 u≥0, u=7-6x-x2解得原复合函数的定义域为-7≤x≤1.因为y=在定义域[0+∞]内是增函数,所以由引理知,原复合函数的单调性与二次函数u=-x2-6x+7的单调性相同.易知u=-x2-6x+7=-(x+3)2+16在x≤-3时单调增加。

      由 -7≤x≤1,(复合函数定义域) x≤-3,(u增)解得-7≤x≤-3.所以[-7,3]是复合函数的单调增区间.易知u=-x2-6x+7=-(x+3)2+16在x≥-3时单调减,由 -7≤x≤1 (复合函数定义域) x≥-3, (u减)解得-3≤x≤1,所以[-3,1]是复合函数的单调减区间.例4 求y=的单调区间.解 : 设y=.由 u∈R, u=x2-2x-1,解得原复合函数的定义域为x∈R.因为y=在定义域R内为减函数,所以由引理知,二次函数u=x2-2x-1的单调性与复合函数的单调性相反.易知,u=x2-2x-1=(x-1)2-2在x≤1时单调减,由 x∈R, (复合函数定义域) x≤1, (u减)解得x≤1.所以(-∞,1]是复合函数的单调增区间.同理[1,+∞)是复合函数的单调减区间.注意:单调区间必须是定义域的子集,当我们求单调区间时,必须先求出原复合函数的定义域.另外,咱们刚刚学习复合函数的单调性,做这类题目时,一定要按要求做,不要跳步.函数的奇偶性典型例题一、关于函数的奇偶性的定义定义说明:对于函数的定义域内任意一个:⑴ 是偶函数;⑵奇函数;函数的定义域关于原点对称是函数为奇(偶)函数的必要不充分条件。

      二、函数的奇偶性的几个性质①、对称性:奇(偶)函数的定义域关于原点对称;②、整体性:奇偶性是函数的整体性质,对定义域内任意一个都必须成立;③、可逆性: 是偶函数;奇函数;④、等价性:⑤、奇函数的图像关于原点对称,偶函数的图像关于轴对称;⑥、可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数三、函数的奇偶性的判断 判断函数的奇偶性大致有下列两种方法:第一种方法:利用奇、偶函数的定义,主要考查是否与、 相等,判断步骤如下:①、 定义域是否关于原点对称;②、 数量关系哪个成立;例1:判断下列各函数是否具有奇偶性 ⑴、 ⑵、 ⑶、 ⑷、 ⑸、 ⑹、解:⑴为奇函数 ⑵为偶函数 ⑶为非奇非偶函数 ⑷为非奇非偶函数 ⑸为非奇非偶函数 ⑹既是奇函数也是偶函数注:教材中的解答过程中对定义域的判断忽略了例2:判断函数的奇偶性 第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。

      四、关于函数的奇偶性的几个命题的判定命题1 函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分条件此命题正确如果函数的定义域不关于原点对称,那么函数一定是非奇非偶函数,这一点可以由奇偶性定义直接得出命题2 两个奇函数的和或差仍是奇函数;两个偶函数的和或差仍是偶函数此命题错误一方面,如果这两个函数的定义域的交集是空集,那么它们的和或差没有定义;另一方面,两个奇函数的差或两个偶函数的差可能既是奇函数又是偶函数,如f(x)=x(x∈〔-1,1〕),g(x)=x(x∈〔-2,2〕),可以看出函数f(x)与g(x)都是定义域上的函数,它们的差只在区间〔-1,1〕上有定义且f(x)-g(x)=0,而在此区间上函数f(x)-g(x)既是奇函数又是偶函数命题3 f(x)是任意函数,那么|f(x)|与f(|x|)都是偶函数此命题错误一方面,对于函数|f(x)|=不能保证f(-x)=f(x)或f(-x)=-f(x);另一方面,对于一个任意函数f(x)而言,不能保证它的定义域关于原点对称如果所给函数的定义域关于原点对称,那么函数f(|x|)是偶函数命题4 如果函数f(x)满足:|f(x)|=|f(-x)|,那么函数f(x)是奇函数或偶函数。

      此命题错误如函数f(x)= 从图像上看,f(x)的图像既不关于原点对称,也不关于y轴对称,故此函数非奇非偶命题5 函数f(x)+f(-x)是偶函数,函数f(x)-f(-x)是奇函数此命题正确由函数奇偶性易证命题6 已知函数f(x)是奇函数,且f(0)有定义,则f(0)=0此命题正确由奇函数的定义易证命题7 已知f(x)是奇函数或偶函数,方程f(x)=0有实根,那么方程f(x)=0的所有实根之和为零;若f(x)是定义在实数集上的奇函数,则方程f(x)=0有奇数个实根此命题正确方程f(x)=0的实数根即为函数f(x)与x轴的交点的横坐标,由奇偶性的定义可知:若f(x0)=0,则f(-x0)=0对于定义在实数集上的奇函数来说,必有f(0)=0故原命题成立五、关于函数按奇偶性的分类全体实函数可按奇偶性分为四类:①奇偶数、②偶函数、③既是奇函数也是偶函数、④非奇非偶函数六、关于奇偶函数的图像特征例1:已知偶函数在轴右则时的图像如图(一)试画出函数轴右则的图像2-111-2XY图(二)0121XY图(一)七、关于函数奇偶性的简单应用1、利用奇偶性求函数值例1:已知且,那么2、利用奇偶性比较大小例2:已知偶函数在上为减函数,比较,。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.