
材料模型与状态方程(共25页).doc
25页精选优质文档-----倾情为你奉上1 John-Cook材料本构模型式中, —— 等效塑性应变; —— s-1的无量纲塑性比,; —— 相对温度, A —— 屈服应力,Pa; B —— 应变硬化系数,Pa; n —— 应变硬化指数; C —— 应变率相关系数; m —— 温度相关系数表达式的第一项表示对于和(等温状态)时的应力与应变的函数关系;表达式的第二项和第三项分别表示应变和率温度的影响表 Johnson和Cook给出的值材料硬度(洛氏)密度g/cm3比热J/kg.K熔温KAMPaBMPanCm高导无氧铜F-308.93831356902920.310.0251.09药筒黄铜F-678.5238511891125050.420.0091.68镍200F-798.944617261636480.330.0061.44工业纯铁F-727.8945218111753800.320.0600.55卡彭特电工钢F-837.8945218112903390.400.0550.551006钢F-947.8945218113502750.360.0221.002024-T351铝B-752.778757752654260.340.0151.007039铝B-762.778758773373430.410.0101.004340钢C-307.8347717937925100.260.0141.03S-7钢C-507.75477176315394770.180.0121.00钨合金0.07Ni 0.03FeC-4717.0134172315061700.120.0161.00Du-75TiC-4518.64471473107911200.250.0071.00韩永要《弹道学报》第16卷第2期rE/GPamA/MPaB/MPaCnmTmelt/KTroom/K93W17.63500.28415061770.0080.121.01450294603钢7.852100.2207921800.0160.121.01520294(断裂破坏时的)应变其中,D1、D2、D3、D4、D5输入参数,s*是压力与有效应力之比,。
当破坏参数达到1时,发生破坏 Hirofumi Iyama, Kousei Takahashi, Takeshi Hinata, Shigeru Itoh.Numerical Simulation of Aluminum Alloy Forming Using Underwater Shock Wave.8th International LS-DYNA Users ConferencerE/GPamA/MPaB/MPaCnmTmelt/KTroom/KA70393373430.010.411.002 Steinberg-Guinan材料本构模型定义材料熔化前的剪切模量p——压力,V——相对体积,Ec——冷压缩能,Em——熔化能,R——气体常数,A——原子量屈服强度如果Em超过Ei,——初始塑性应变,当超过,设置等于材料熔化之后,和G设置为初始值的一半 OFHC为高导无氧铜,聚能装药药型罩常用材料*MAT_STEINBERG$ MID R0 G0 SIGO BETA N GAMA SIGM2 8.93 0.477 0.120E-02 36.0 0.450 0.00 0.640E-02$ B BP H F A TMO GAMO SA2.83 2.83 0.377E-03 0.100E-02 63.5 0.179E+04 2.02 1.50$ PC SPALL RP FLAG MMN MMX ECO EC1-9.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00$ EC2 EC3 EC4 EC5 EC6 EC7 EC8 EC90.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 *EOS_GRUNEISEN$ EOSID C S1 S2 S3 GAMAO A E02 0.394 1.49 0.00 0.00 2.02 0.470 0.00 $ V01.00M.Katayama, S.Kibe, T.Yamamoto.Numerical and Experimental Study on the Shaped Charge for Space Debris Assessment.Acta Astronauttca Vol.48,No.5-12,pp.363-372,2001/GPa/GPa/GPa/MPa.K-1emaxAluminum27.10.040.484000.271.767-16.692.608e-31.0Copper47.70.120.64360.451.35-17.983.396e-31.0W.H.Lee, J.W.Painter.Material void-opening computation using particle method.International Journal of Impact Engineering 22(1999)1-22二阶状态方程剪切模量G与流体应力Y间的本构关系,,,,系数tungstenaluminumsteelTungsten-copper alloy二阶状态方程A121.674191.4.2.A214.933380.3.4.B010.3.7.4.B112.1.11.0.B29.0.5.6.C00.0.0.0.C10.0.0.0.D07.01.53.62.2r019.172.8067.918.983本构关系G01.60.2760.4770.844Ya0.0220.00290.00120.0012b7.7125.03616000n0.130.10.450.26Ymax0.040.00680.00640.0168b1.3757.9713.4.739h-0.-0.-0.-0.q1.01.01.01.0f0.0010.0010.0010.001g0.0010.0010.0010.001R’0.0.0.0.Tme45201220.017901710g0-a0.270.490.520.92a1.41.71.51.53 Mie-Gruneisen状态方程定义压缩材料的压力为定义膨胀材料的压力为其中:C为us-up曲线的截距,体积声速S1、S2、S3是us-up曲线斜率的系数,是Gruneisen 常数,,a是的一阶体积修正。
Ccm/usS1S2S3g0aE出处铜0.3941.492.020.47水0.16471.921-0.0960.00.352.895e-60.1651.920.1(3)Australia0.1491.791.652.895e-6(1)日本0.1482.56-1.9860.22680.502.895e-60.14891.791.65(4) 日本0.1481.791.65(5) 日本0.14841.790.113.0钨0.3991.241.54铁0.45691.492.170.464340钢0.45781.331.670.43Steel(SS400)0.4581.491.93(5)Aluminum0.53861.3391.97(2)日本POLYRUBBER 8.54000E-021.86500E+00(1)Hirofumi Iyama, Kousei Takahashi, Takeshi Hinata, Shigeru Itoh.Numerical Simulation of Aluminum Alloy Forming Using Underwater Shock Wave.8th International LS-DYNA Users Conference(2)M. Katayama, S. Kibe, T. Yamamoto.Numerical and Experimental Study on the Shaped Charge for Space Debris Assessment.Acta Astronauttca Vol.48,No.5-12,pp.363-372,2001(3)JingPing Lu, Helen Dorsett, David L. Kennedy.Simulation of Aquarium Tests for PBXW-115(AUST)(4)S. Itoh, H. Hamashima.Determination of JWL Parameters from Underwater Explosion Test(5)Katsuhiko Takahashi, Kenji Murata, Akio Torii, Yukio Kato.Enhancement of Underwater Shock Wave by Metal Confinement4 多线性多项式状态方程压力由下式定义其中,,如果,则设置,。
当设置,时,就可以用于符合律状态方程的气体,其中为比热系数C0C1C2C3C4C5C6E0V0空气0.00.00.00.00.40.4。












