好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

新高考2021届高三数学入学调研试题二.doc

15页
  • 卖家[上传人]:i****
  • 文档编号:144133707
  • 上传时间:2020-09-06
  • 文档格式:DOC
  • 文档大小:1.15MB
  • / 15 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 新高考)2021届高三数学入学调研试题(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内写在试题卷、草稿纸和答题卡上的非答题区域均无效4.考试结束后,请将本试题卷和答题卡一并上交第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( )A.空集 B. C. D.2.已知复数满足,则( )A. B. C. D.3.已知向量,,且,则与的夹角为( )A. B. C. D.4.若的展开式中常数项为,则实数( )A. B. C. D.5.正三角形的边长为,将它沿高折叠,使点与点间的距离为,则四面体外接球的表面积为( )A. B. C. D.6.设命题,,则为( )A., B.,C., D.,7.已知为函数的图像上任意一点,过作直线,分别与圆相切于,两点,则原点到直线得距离的最大值为( )A. B. C. D.8.已知定义在上的函数满足,为偶函数,若在内单调递减,则下面结论正确的是( )A. B.C. D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.即空气质量指数,越小,表明空气质量越好,当不大于时称空气质量为“优良”,如图是某市月日到日的统计数据,则下列叙述不正确的是( )A.这天的的中位数是 B.天中超过天空气质量为“优良”C.从月日到日,空气质量越来越好 D.这天的的平均值为10.如图,在正方体中,点段上运动,则下列判断中正确的是( )A.平面平面B.平面C.异面直线与所成角的取值范围是D.三棱锥的体积不变11.设,是抛物线上的两个不同的点,是坐标原点,若直线与的斜率之积为,则下列说法错误的是( )A. B.以为直径的圆的面积大于C.直线过抛物线的焦点 D.到直线的距离不大于12.已知函数的图象如图所示,令,则下列关于函数的说法中正确的是( )A.函数图象的对称轴方程为B.函数的最大值为C.函数的图象上存在点,使得在点处的切线与直线平行D.方程的两个不同的解分别为,,则最小值为第Ⅱ卷三、填空题:本大题共4小题,每小题5分,共20分.13.甲、乙、丙、丁四名同学申报所不同的高校的自主招生,要求每名同学只能申报一所学校,每所学校必须有同学申报,甲、乙或甲、丙均不能申报同一所学校,则不同的申报方案有 种.14.已知角满足,则 .15.已知椭圆的右焦点为,其关于直线的对称点在椭圆上,则离心率 , .16.已知球的体积为,则球的内接圆锥的体积的最大值为_________.四、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在数列中,,,设,.(1)求证数列是等差数列,并求通项公式;(2)设,且数列的前项和为,若,求使恒成立的的取值范围.18.(12分)如图,在中,,,,,分别为,的中点.(1)若,求;(2)若,求的大小.19.(12分)如图,四棱锥中,底面,底面为直角梯形,,,,分别为,的中点.(1)求证:平面;(2)若截面与底面所成锐二面角为,求的长度.20.(12分)某小学举办“父母养育我,我报父母恩”的活动,对六个年级(一年级到六年级的年级代码分别为,,…,)的学生给父母洗脚的百分比进行了调查统计,绘制得到下面的散点图.(1)由散点图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明;(2)建立关于的回归方程,并据此预计该校学生升入中学的第一年(年纪代码为)给父母洗脚的百分比.附注:参考数据:,,.参考公式:相关系数,若,则与的线性相关程度相当高,可用线性回归模型拟合与的关系.回归方程中斜率与截距的最小二乘估计公式分别为:,.21.(12分)已知点是离心率为的椭圆()上的一点,斜率为的直线交椭圆于、两点,且、、三点不重合.(1)求椭圆的方程;(2)求证:直线,的斜率之和为定值;(3)面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?22.(12分)已知函数有两个极值点.(1)求的取值范围;(2)设,()是的两个极值点,证明:.(新高考)2021届高三入学调研试卷数 学(二)答 案第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】C【解析】因为,所以,即,又,所以,因此.2.【答案】A【解析】∵,∴.3.【答案】A【解析】设与的夹角为,∵,∴,∴,∵,∴.4.【答案】C【解析】展开式的通项公式,故当时,为常数项,此时,故.5.【答案】B【解析】根据题意可知四面体的三条侧棱、,底面是等腰,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的上下底面三角形的中心连线的中点到顶点的距离,就是球的半径,三棱柱中,底面,,,∴,∴的外接圆的半径为,由题意可得:球心到底面的距离为,∴球的半径为,外接球的表面积为.6.【答案】B【解析】全称命题的否定是特称命题.7.【答案】B【解析】设,则,∴以为直径的圆的方程为,即,又∵为圆与圆的公共弦,∴两圆作差可得直线的方程为,∴点到直线的距离,当且仅当,即或时取等号,∴原点到直线的距离的最大值为.8.【答案】A【解析】∵,∴的周期为,又∵为偶函数,∴,,∵,,∴,又在内单调递减,∴,∴.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.【答案】ABD【解析】这天的指数值的中位数是,故A不正确;这天中,空气质量为“优良”的有,,,,,共天,故B不正确;从日到日,空气质量越来越好,故C正确;这天的指数值的平均值约为,故D不正确.10.【答案】ABD【解析】A中,连接,根据正方体的性质,有面,平面,从而可以证明平面平面,正确;B中,连接,容易证明平面面,从而由线面平行的定义可得平面,正确;C中,当与线段的两端点重合时,与所成角取最小值,当与线段的中点重合时,与所成角取最大值,故与所成角的范围是,错误;D中,,到面的距离不变,且三角形的面积不变,∴三棱锥的体积不变,正确.11.【答案】ABC【解析】当直线的斜率不存在时,设,,由斜率之积为,可得,即,∴的直线方程为;当直线的斜率存在时,设直线方程为,联立,可得,此时设,,则,,∴,即,∴直线方程为,则直线过定点,则到直线的距离不大于.12.【答案】ABD【解析】根据函数的图象知,,,∴,,根据五点法画图知,当时,,∴,∴,∴,∴,令,,解得,,∴函数的对称轴方程为,,A正确;当,时,函数取得最大值,B正确;,假设函数的图象上存在点,使得在点处的切线与直线平行,则,解得,显然不成立,所以假设错误,即C错误;方程,则,∴,∴或,;∴方程的两个不同的解分别为,时,的最小值为,D正确.第Ⅱ卷三、填空题:本大题共4小题,每小题5分,共20分.13.【答案】【解析】根据题意,必定有两个人报一所学校,有种可能:甲丁、丙丁、乙丁、乙丙,将这些分别看作一个整体,再排列组合,所以总共有.14.【答案】【解析】由题意得.15.【答案】,【解析】设,由题意可得,由①②可得,,代入③可得,即,可得,解得,所以,,,所以,所以是等腰直角三角形,所以.16.【答案】【解析】设球的半径为,则有,整理得,即,设该球的内接圆锥的底面圆的半径为,高为,则有,而该圆锥的体积,利用均值不等式可得当时,即时取得最大值,且最大值为.四、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)证明见解析,;(2).【解析】(1)由条件知,,所以,,所以,又,所以,数列是首项为,公差为的等差数列,故数列的通项公式为.(2)由(1)知,,则,①,②由①②,得,∴,∵,∴恒成立,等价于对任意恒成立.∵,∴.18.【答案】(1);(2).【解析】(1)由可知,,,所以,因为,所以,所以,所以.(2)因为,所以,所以.19.【答案】(1)证明见解析;(2).【解析】(1)证明:取的中点,连接,,∵是的中点,∴且,∵底面为直角梯形,,,∴,,∴且,∴四边形是平行四边形,∴,又∵平面,平面,∴平面.(2)如图,分别以,,为,,轴建立空间直角坐标系,设,则,,,,,,取平面的法向量,,,设平面的法向量为,则有,即,不妨设,则,,即,∴,解得,即.20.【答案】(1)见解析;(2).【解析】(1)因为,所以,所以,因为,所以,所以,由于与的相关系数约为,说明与的线性相关程度相当高,从而可用线性回归模型拟合与的关系.(2),因为,所以,所以回归方程为.将,代入回归方程可得,所以预计该校学生升入中学的第一年给父母洗脚的百分比为.21.【答案】(1);(2)证明见解析;(3)存在,最大值为.【解析】(1)∵点是离心率为的椭圆()上的一点,∴,解得,,,∴椭圆的方程为.(2)设,,直线、的斜率分别为、,设直线的方程为,联立,得,∴,解得,①,②,则,(*)将①、②式代入*式整理得,∴直线,的斜率之和为定值.(3),设为点到直线的距离,∴,∴,当且仅当时取等号,∵,∴当时,的面积最大,最大值为.22.【答案】(1);(2)证明见解析.【解析】(1)由,,得,函数有两个极值点等价于在上有两个变号零点,等价于在上有两个变号零点,令,则,所以时,,单调递增;时,,单调递减,所以,当时,恒成立,在上单调递减,不可能有两个极值点,舍去;当时,,,,,而,由零点存在性定理得在和内分别存在一个变号零点,此时有两个极值点,综上,所求的取值范围为.(2)因为,()是的两个极值点,所以,且,由(1)知,,,令,,则,由在恒成立,得时,,单调递减,又,所以时,,即,所以,所以,由(1)知,在单调递减,所以,即,所以,即,因为,所以,,所以,即.。

      点击阅读更多内容
      相关文档
      礼仪讲授教案.docx 高考语文一轮复习讲义 第5部分 传统文化阅读·名句名篇默写.docx 高考语文一轮复习讲义 第11部分 写作 任务组五 微任务 作文书写——比天还大的事儿.docx 高考语文一轮复习讲义 第4部分 传统文化阅读 古诗词 任务组二 真题研练.docx 高考语文一轮复习讲义 第3部分 传统文化阅读 文言文(考点部分) 任务组三 任务四 仔细比对准确提取概括分析文意.docx 高考语文一轮复习讲义 第1部分 语言策略与技能 任务组二 任务五 看准对象因境设辞做到语言得体.docx 高考化学 1.传统文化与STSE 答案解析.docx 高考语文一轮复习讲义现代文阅读 专题16 Ⅱ 真题研练.docx 高考化学 专项拔高抢分练 9.反应热与反应历程.docx 高考化学 专项拔高抢分练 1.传统文化与STSE.docx 高考物理 板块三  气体实验定律和热力学定律的综合应用.docx 高考化学 二题型3 无机化工生产流程题.docx 高考语文一轮复习讲义 第4部分 写作 专题17 Ⅲ 突破二 绘声绘色巧用细节描写生动丰满.docx 高考数学 中档大题练1.docx 高考语文一轮复习讲义 第5部分 教材文言文点线面教材文言文复习综合试卷.docx 高考语文一轮复习讲义 第4部分 传统文化阅读 古诗词 任务组三 微任务一 聚焦诗意准确选择.docx 高考数学 创新融合4 数列与导数.docx 高考语文一轮复习讲义 第5部分 教材文言文点线面 教材文言文点线面 必修5课文1 归去来兮辞 并序.docx 高考语文一轮复习讲义 第11部分 写作 任务组五 任务二 “三管”齐下美“言”有术文采抢眼养颜.docx 高考数学 满分案例三 立体几何.docx
      猜您喜欢
      广西钦州市2019-2020学年高二数学下学期期末教学质量监测试题理.doc 运动健康基础知识PPT.ppt 广西桂林市龙胜中学2019-2020学年高二化学开学考试试题.doc 广东省汕尾市海丰县2019-2020学年高一英语”线上教育“教学质量监测试题.doc 质量守恒定律课件上课.ppt 广西桂林市2019-2020学年高二物理下学期期末质量检测试题.doc 广西钦州一中2021届高三地理8月月考试题.doc 广东省汕头市金山中学2019-2020学年高一地理下学期期中试题.doc 广东省汕尾市海丰县2019-2020学年高一语文”线上教育“教学质量监测试题.doc 广东省揭阳市产业园2019-2020学年高一数学下学期期末考试试题.doc 广西钦州市2019-2020学年高一历史下学期期末教学质量监测试题理.doc 广西桂林市龙胜中学2019-2020学年高一英语入学考试试题.doc 广西钦州一中2021届高三物理8月月考试题.doc 广西钦州一中2021届高三生物8月月考试题.doc 广西钦州市2019-2020学年高一政治下学期期末教学质量监测试题文.doc 广西钦州市2019-2020学年高一语文下学期期末教学质量监测试题.doc 广西桂林市2019-2020学年高一地理下学期期末质量检测试题.doc 广西钦州市2019-2020学年高二数学下学期期末教学质量监测试题文.doc 广西桂林市龙胜中学2019-2020学年高一政治入学考试试题.doc 广西桂林市龙胜中学2019-2020学年高一语文入学考试试题.doc
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.