
2013济宁中考三摸.doc
18页山东省济宁市2013年中考数学三模试卷一、选择题(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2013•济宁三模)的算术平方根为( ) A.2B.﹣2C.±2D.16考点:算术平方根分析:先计算,再求其算术平方根.解答:解:∵=4,4的算术平方根为2,∴的算术平方根为2,故选A.点评:本题考查了算术平方根的概念.特别注意:应首先计算的值,然后再求算术平方根. 2.(3分)(2013•济宁三模)据萧山区旅游局统计,2012年春节约有359525人来萧旅游,将这个旅游人数 (保留三个有效数字)用科学记数法表示为( ) A.3.59×105B.3.60×105C.3.5×105D.3.6×105考点:科学记数法与有效数字专题:计算题.分析:根据科学记数法与有效数字的定义将359525保留三个有效数字得到3.60×105.解答:解:359525≈3.60×105.故选B.点评:本题考查了科学记数法与有效数字:把一个数表示成a×10n(1≤a<10)叫科学记数法;从一个数的左边第一个不为零的数字数起,到最后一个数字止,所有数字都是这个数的有效数字. 3.(3分)(2013•济宁三模)下列运算正确的是( ) A.﹣(a﹣1)=﹣a﹣1B.(﹣2a3)2=4a6C.(a﹣b)2=a2﹣b2D.a3+a2=2a5考点:完全平方公式;合并同类项;去括号与添括号;幂的乘方与积的乘方专题:常规题型.分析:根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解.解答:解:A、因为﹣(a﹣1)=﹣a+1,故本选项错误;B、(﹣2a3)2=4a6,正确;C、因为(a﹣b)2=a2﹣2ab+b2,故本选项错误;D、因为a3与a2不是同类项,而且是加法,不能运算,故本选项错误.故选B.点评:本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键. 4.(3分)(2013•济宁三模)如图,由几个小正方体组成的立体图形的俯视图是( ) A.B.C.D.考点:简单组合体的三视图分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面看易得:有两列小正方形第一列有3个正方形,第二层最右边有一个正方形.故选D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,考查了学生细心观察能力,属于基础题. 5.(3分)(2013•济宁三模)下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖 C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球 D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上考点:随机事件分析:确定事件包括必然事件和不可能事件.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.解答:解:A、掷一枚均匀的硬币,正面朝上是随机事件;B、买一注福利彩票一定会中奖是随机事件;C、把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,即确定事件;D、掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上是随机事件.故选C.点评:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.注意确定事件包括必然事件和不可能事件. 6.(3分)(2013•济宁三模)若式子有意义,则x的取值范围为( ) A.x≥2B.x≠3C.x≥2或x≠3D.x≥2且x≠3考点:二次根式有意义的条件;分式有意义的条件专题:计算题.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解答:解:根据二次根式有意义,分式有意义得:x﹣2≥0且x﹣3≠0,解得:x≥2且x≠3.故选D.点评:本题考查了二次根式有意义的条件和分式的意义.考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数. 7.(3分)(2013•济宁三模)已知,且﹣1<x﹣y<0,则k的取值范围为( ) A.﹣1<k<﹣B.0<k<C.0<k<1D.<k<1考点:解一元一次不等式组分析:利用第二个方程减去第一个方程,得到一个不等式,根据﹣1<x﹣y<0得到一个不等式,组成不等式组解这个不等式即可.解答:解:第二个方程减去第一个方程得到x﹣y=1﹣2k,根据﹣1<x﹣y<0得到:﹣1<1﹣2k<0即解得<k<1k的取值范围为<k<1.故选D.点评:要求k的取值范围可以通过解方程组,得到关于k的不等式组解决. 8.(3分)(2013•济宁三模)二次函数y1=ax2﹣x+1的图象与y2=﹣2x2图象的形状,开口方向相同,只是位置不同,则二次函数y1的顶点坐标是( ) A.(﹣,﹣)B.(﹣,)C.(,)D.(,﹣)考点:二次函数的性质分析:因为图象的形状,开口方向相同,所以a=﹣2.利用公式法y=ax2+bx+c的顶点坐标公式即可求.解答:解:根据题意可知,a=﹣2,又∵=﹣,=,∴顶点坐标为(﹣,).故选B.点评:此题考查了二次函数的性质. 9.(3分)(2013•济宁三模)如图,P1是反比例函数y=在第一象限图象上的一点,点A1的坐标为(2,0).若△P1OA1与△P2A1A2均为等边三角形,则A2点的坐标为( ) A.2B.2﹣1C.2D.2﹣1考点:反比例函数综合题分析:由于△P1OA1为等边三角形,作P1C⊥OA1,垂足为C,由等边三角形的性质及勾股定理可求出点P1的坐标,根据点P1是反比例函数y=图象上的一点,利用待定系数法求出此反比例函数的解析式;作P2D⊥A1A2,垂足为D.设A1D=a,由于△P2A1A2为等边三角形,由等边三角形的性质及勾股定理,可用含a的代数式分别表示点P2的横、纵坐标,再代入反比例函数的解析式中,求出a的值,进而得出A2点的坐标.解答:解:(1)因为△P1OA1为边长是2的等边三角形,所以OC=1,P1C=2×=,所以P1(1,).代入y=,得k=,所以反比例函数的解析式为y=.作P2D⊥A1A2,垂足为D.设A1D=a,则OD=2+a,P2D=a,所以P2(2+a,a).∵P2(2+a,a)在反比例函数的图象上,∴代入y=,得(2+a)•a=,化简得a2+2a﹣1=0解得:a=﹣1±.∵a>0,∴a=﹣1+.∴A1A2=﹣2+2,∴OA2=OA1+A1A2=2,所以点A2的坐标为(2,0).故选C.点评:此题综合考查了反比例函数的性质,利用待定系数法求函数的解析式,正三角形的性质等多个知识点.此题难度稍大,综合性比较强,注意对各个知识点的灵活应用. 10.(3分)(2013•济宁三模)在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2012个正方形的面积为( ) A.B.C.D.考点:相似三角形的判定与性质;坐标与图形性质;正方形的性质专题:压轴题;规律型.分析:首先设正方形的面积分别为S1,S2…S2012,由题意可求得S1的值,易证得△BAA1∽△B1A1A2,利用相似三角形的对应边成比例与三角函数的性质,即可求得S2的值,继而求得S3的值,继而可得规律:Sn=5×()2n﹣2,则可求得答案.解答:解:∵点A的坐标为(1,0),点D的坐标为(0,2),∴OA=1,OD=2,设正方形的面积分别为S1,S2…S2012,根据题意,得:AD∥BC∥C1A2∥C2B2,∴∠BAA1=∠B1A1A2=∠B2A2x,∵∠ABA1=∠A1B1A2=90°,∴△BAA1∽△B1A1A2,在直角△ADO中,根据勾股定理,得:AD==,∴AB=AD=BC=,∴S1=5,∵∠DAO+∠ADO=90°,∠DAO+∠BAA1=90°,∴∠ADO=∠BAA1,∴tan∠BAA1===,∴A1B=,∴A1C=BC+A1B=,∴S2=×5=5×()2,∴==,∴A2B1=×=,∴A2C1=B1C1+A2B1=+==×()2,∴S3=×5=5×()4,由此可得:Sn=5×()2n﹣2,∴S2012=5×()2×2012﹣2=5×()4022.故选D.点评:此题考查了相似三角形的判定与性质、正方形的性质以及三角函数等知识.此题难度较大,解题的关键是得到规律Sn=5×()2n﹣2. 二、填空题(本大题共5个小题.每小题3分,共15分.把答案填在题中横线上)11.(3分)(2013•济宁三模)分解因式:2x2+4x+2= 2(x+1)2 .考点:提公因式法与公式法的综合运用分析:先提取公因式2,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.解答:解:2x2+4x+2=2(x2+2x+1)=2(x+1)2.故答案为:2(x+1)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底. 12.(3分)(2013•济宁三模)当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为 cm.考点:垂径定理的应用;勾股定理专题:压轴题;探究型.分析:连接OA,过点O作OD⊥AB于点D,由垂径定理可知,AD=AB=(9﹣1)=4,设OA=r,则OD=r﹣3,在Rt△OAD中利用勾股定理求出r的值即可.解答:解:连接OA,过点O作OD⊥AB于点D,∵OD⊥AB,∴AD=AB=(9﹣1)=4cm,设OA=r,则OD=r﹣3,在Rt△OAD中,OA2﹣OD2=AD2,即r2﹣(r﹣3)2=42,解得r=cm.故答案为:.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键. 13.(3分)(2013•济宁三模)化简的结果是 m+1 .考点:分式的混合运算专题:计算题.分析:把原式括号中通分后,利用同分母分式的加法运算法则:分母不变,只把分子相加进行计算,同时将除式的分母利用平方差公式分解因式,并根据除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后即可得到结果.解答:解:(1+)÷=(+)÷=•=•=m+1.故答案为:m+1点评:此题考查。
