
1990年-2012年考研数学一历年真题(共87页).doc
87页精选优质文档-----倾情为你奉上1990年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)过点且与直线 垂直的平面方程是_____________. (2)设为非零常数,则=_____________. (3)设函数 ,则=_____________.(4)积分的值等于_____________.(5)已知向量组则该向量组的秩是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设是连续函数,且则等于(A) (B)(C) (D) (2)已知函数具有任意阶导数,且则当为大于2的正整数时的阶导数是(A) (B) (C) (D) (3)设为常数,则级数(A)绝对收敛 (B)条件收敛 (C)发散 (D)收敛性与的取值有关 (4)已知在的某个邻域内连续,且则在点处(A)不可导 (B)可导,且(C)取得极大值 (D)取得极小值 (5)已知、是非齐次线性方程组的两个不同的解、是对应其次线性方程组的基础解析、为任意常数,则方程组的通解(一般解)必是(A) (B) (C) (D) 三、(本题共3小题,每小题5分,满分15分) (1)求 (2)设其中具有连续的二阶偏导数,求(3)求微分方程的通解(一般解).四、(本题满分6分)求幂级数的收敛域,并求其和函数.五、(本题满分8分)求曲面积分其中是球面外侧在的部分.六、(本题满分7分)设不恒为常数的函数在闭区间上连续,在开区间内可导,且证明在内至少存在一点使得七、(本题满分6分)设四阶矩阵且矩阵满足关系式其中为四阶单位矩阵表示的逆矩阵表示的转置矩阵.将上述关系式化简并求矩阵八、(本题满分8分)求一个正交变换化二次型成标准型.九、(本题满分8分) 质点沿着以为直径的半圆周,从点运动到点的过程中受变力作用(见图).的大小等于点与原点之间的距离,其方向垂直于线段且与轴正向的夹角小于求变力对质点所作的功.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机变量的概率密度函数则的概率分布函数=____________.(2)设随机事件、及其和事件的概率分别是0.4、0.3和0.6,若表示的对立事件,那么积事件的概率=____________.(3)已知离散型随机变量服从参数为2的泊松分布,即则随机变量的数学期望=____________.十一、(本题满分6分)设二维随机变量在区域内服从均匀分布,求关于的边缘概率密度函数及随机变量的方差1991年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)设 ,则=_____________. (2)由方程所确定的函数在点处的全微分=_____________. (3)已知两条直线的方程是则过且平行于的平面方程是_____________.(4)已知当时与是等价无穷小,则常数=_____________.(5)设4阶方阵则的逆阵=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)曲线(A)没有渐近线 (B)仅有水平渐近线 (C)仅有铅直渐近线 (D)既有水平渐近线又有铅直渐近线 (2)若连续函数满足关系式则等于(A) (B) (C) (D) (3)已知级数则级数等于(A)3 (B)7 (C)8 (D)9(4)设是平面上以、和为顶点的三角形区域是在第一象限的部分,则等于(A) (B) (C) (D)0 (5)设阶方阵、、满足关系式其中是阶单位阵,则必有(A) (B) (C) (D) 三、(本题共3小题,每小题5分,满分15分) (1)求 (2)设是曲面在点处的指向外侧的法向量,求函数在点处沿方向的方向导数.(3)其中是由曲线 绕轴旋转一周而成的曲面与平面所围城的立体.四、(本题满分6分)过点和的曲线族中,求一条曲线使沿该曲线从到的积分的值最小.五、(本题满分8分)将函数展开成以2为周期的傅里叶级数,并由此求级数的和.六、(本题满分7分)设函数在上连续内可导,且证明在内存在一点使七、(本题满分8分)已知及 (1)、为何值时不能表示成的线性组合? (2)、为何值时有的唯一的线性表示式?写出该表示式.八、(本题满分6分)设是阶正定阵是阶单位阵,证明的行列式大于1.九、(本题满分8分)在上半平面求一条向上凹的曲线,其上任一点处的曲率等于此曲线在该点的法线段长度的倒数(是法线与轴的交点),且曲线在点处的切线与轴平行.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)若随机变量服从均值为2、方差为的正态分布,且则=____________.(2)随机地向半圆为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与轴的夹角小于的概率为____________.十一、(本题满分6分)设二维随机变量的密度函数为 求随机变量的分布函数.◆ 1992年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)设函数由方程确定,则=_____________. (2)函数在点处的梯度=_____________. (3)设 ,则其以为周期的傅里叶级数在点处收敛于_____________.(4)微分方程的通解为=_____________.(5)设其中则矩阵的秩=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)当时,函数的极限(A)等于2 (B)等于0(C)为 (D)不存在但不为(2)级数常数(A)发散 (B)条件收敛 (C)绝对收敛 (D)收敛性与有关 (3)在曲线的所有切线中,与平面平行的切线(A)只有1条 (B)只有2条(C)至少有3条 (D)不存在(4)设则使存在的最高阶数为(A)0 (B)1 (C)2 (D)3 (5)要使都是线性方程组的解,只要系数矩阵为(A) (B) (C) (D) 三、(本题共3小题,每小题5分,满分15分) (1)求 (2)设其中具有二阶连续偏导数,求(3)设 ,求四、(本题满分6分)求微分方程的通解.五、(本题满分8分)计算曲面积分其中为上半球面的上侧.六、(本题满分7分)设证明对任何有七、(本题满分8分)在变力的作用下,质点由原点沿直线运动到椭球面上第一卦限的点问当、、取何值时,力所做的功最大?并求出的最大值. 八、(本题满分7分)设向量组线性相关,向量组线性无关,问:(1)能否由线性表出?证明你的结论.(2)能否由线性表出?证明你的结论.九、(本题满分7分)设3阶矩阵的特征值为对应的特征向量依次为又向量(1)将用线性表出.(2)求为自然数).十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知则事件、、全不发生的概率为____________.(2)设随机变量服从参数为1的指数分布,则数学期望=____________.十一、(本题满分6分)设随机变量与独立服从正态分布服从上的均匀分布,试求的概率分布密度(计算结果用标准正态分布函数表示,其中.1993年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)函数的单调减少区间为_____________. (2)由曲线 绕轴旋转一周得到的旋转面在点处的指向外侧的单位法向量为_____________. (3)设函数的傅里叶级数展开式为则其中系数的值为_____________.(4)设数量场则=_____________.(5)设阶矩阵的各行元素之和均为零,且的秩为则线性方程组的通解为_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设则当时是的(A)等价无穷小 (B)同价但非等价的无穷小(C)高阶无穷小 (D)低价无穷小 (2)双纽线所围成的区域面积可用定积分表示为(A) (B)(C) (D)(3)设有直线与 则与的夹角为(A) (B)(C) (D)(4)设曲线积分与路径无关,其中具有一阶连续导数,且则等于(A) (B) (C) (D) (5)已知为三阶非零矩阵,且满足则(A)时的秩必为1 (B)时的秩必为2 (C)时的秩必为1 (D)时的秩必为2 三、(本题共3小题,每小题5分,满分15分) (1)求 (2)求(3)求微分方程满足初始条件的特解.四、(本题满分6分)计算其中是由曲面与所围立体的表面外侧.五、(本题满分7分)求级数的和.六、(本题共2小题,每小题5分,满分10分) (1)设在上函数有连续导数,且证明在内有且仅有一个零点. (2)设证明七、(本题满分8分)已知二次型通过正交变换化成标准形求参数及所用的正交变换矩阵.八、(本题满分6分)设是矩阵是矩阵,其中是阶单位矩阵,若证明的列向量组线性无关.九、(本题满分6分)设物体从点出发,以速度大小为常数沿轴正向运动.物体从点与同时出发,其速度大小为方向始终指向试建立物体的运动轨迹所满足的微分方程,并写出初始条件.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为____________.(2)设随机变量服从上的均匀分布,则随机变量在内的概率分布密度=____________.十一、(本题满分6分)设随机变量的概率分布密度为 (1)求的数学期望和方差 (2)求与的协方差,并。












