好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

六西格玛:相关跟回归分析(39)课件.ppt

39页
  • 卖家[上传人]:夏日****8
  • 文档编号:331238894
  • 上传时间:2022-08-17
  • 文档格式:PPT
  • 文档大小:617.50KB
  • / 39 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 相关和回归分析相关和回归分析相关和回归分析相关和回归分析 1(分析阶段)(分析阶段)(ZTE-GB402-V1.5)(ZTE-GB402-V1.5)相关和回归分析相关和回归分析 相关和回归分析相关和回归分析相关和回归分析相关和回归分析 2主要内容主要内容1.1.相关分析相关分析2.2.回归分析回归分析相关和回归分析相关和回归分析相关和回归分析相关和回归分析 3q 学习目的学习目的变量(X1)与变量(X2)间或X与Y间 -有多少相关性 相关分析相关分析 -变量间关系式的推测 回归分析回归分析 它们之间有关系吗它们之间有关系吗?有多强的关系有多强的关系?有什么样的关系式有什么样的关系式?机动车的数量 vs 交通事故发生率l 网板厚度 vs 焊膏厚度相关和回归分析相关和回归分析相关和回归分析相关和回归分析 41.1.相关关系是相关关系是?相关关系可以用数据来看出两个变量(Y与X,或两个X)间紧密程度如何.两者之间关系的强度通过相关系数(r)可以计数化.(Minitab使用Pearson product moment 相关系数)-1.0-1.0 0 0+1.0+1.0 负的相关系负的相关系 正的相关关系正的相关关系“r”弱相关关系弱相关关系 决定点决定点相关和回归分析相关和回归分析相关和回归分析相关和回归分析 5r值值 r 接近-1 r 接近+1(+)正的相关关系()负的相关关系接近0时几乎没有相关关系相关系数的性质相关系数的性质为调查相关关系,需要数据构造为成对的2个变量数据相关和回归分析相关和回归分析相关和回归分析相关和回归分析 6相关系数相关系数(Correlation Coefficient)Correlation Coefficient)一般表示为(总体的相关关系),其范围是 1 1.一般情况下我们无法知道的正确的值,因此使用从样本推断的值r.r从 如下公式得出且范围是-1 r 1.一般样本大小一般样本大小(30(30个以上个以上)为基准为基准 如果|r|0.80 时具有强的相关关系 如果 0.3|r|0.80 时具有弱的相关关系.如果|r|Basic Statistics Stat Basic Statistics CorrelationCorrelation从上面点来看从上面点来看,可以猜可以猜测有强的相关关系测有强的相关关系相关和回归分析相关和回归分析相关和回归分析相关和回归分析 12分析结果根据分析结果根据 刮刀压力和焊膏厚度的相关系数为刮刀压力和焊膏厚度的相关系数为r=0.955,r=0.955,可看出具有强的负相关可看出具有强的负相关.从上述结果可以得出从上述结果可以得出:为了保证焊膏厚度符合要求为了保证焊膏厚度符合要求.必须监控刮刀的压力必须监控刮刀的压力.q 统计分析统计分析q 结果解释结果解释相关和回归分析相关和回归分析相关和回归分析相关和回归分析 13事例分析事例分析下面给出下面给出13家上市公司的每股账面价值和每股红利,以家上市公司的每股账面价值和每股红利,以1.账面价值作为横轴,画散点图账面价值作为横轴,画散点图2.计算相关系数并解释计算相关系数并解释公司名称账面价值红利海尔22.442.40中兴23.542.98深科技22.092.06深发展14.481.09清华同方20.731.96上海一汽19.251.55第一铅笔20.732.16陕西旅游26.431.60云南白药12.140.8粤电力23.311.94北大方正16.233.00深彩虹18.051.80咸阳偏转12.451.21相关和回归分析相关和回归分析相关和回归分析相关和回归分析 14从散点图我们可以看出什么?从散点图我们可以看出什么?相关系数可以看出什么?相关系数可以看出什么?相关和回归分析相关和回归分析相关和回归分析相关和回归分析 15通过它我们可以知道哪个输入对输出值通过它我们可以知道哪个输入对输出值 有多少影响有多少影响?为了得到想要的输出值为了得到想要的输出值,我们应按什么水我们应按什么水 平管理平管理X X的规格的规格.回归回归寻找寻找“Y”与与“X”关系的方法关系的方法什么是回归?什么是回归?描述“Y”与“X”关系的数学方法 创建过程的“模型”。

      2.2.回归分析回归分析相关和回归分析相关和回归分析相关和回归分析相关和回归分析 16 相关是告诉关系的程度相关是告诉关系的程度,回归分析是找出回归分析是找出Y=F(X)Y=F(X)的函数关系式的函数关系式 回归分析的种类回归分析的种类 单纯回归模型:独立变量为一个 多重回归模型:独立变量为两个以上例 Y=a+bx1+cx2+dx3 单纯线性回归模型:设定直线关系后分析例 Y=a+bx 曲线回归模型:设定曲线关系后分析例 Y=a+bx+cx2+dx3 Y=a bx相关和回归分析相关和回归分析相关和回归分析相关和回归分析 17单纯线性回归单纯线性回归回归分析的阶段回归分析的阶段Data Data 收集收集用散点图确认关系用散点图确认关系用最小二乘法用最小二乘法推断总体推断总体进行方差分析进行方差分析画直线画直线(Line Fitting)Line Fitting)分析残差分析残差此章的因子为一个此章的因子为一个,因子和输出值因子和输出值(Y)Y)的关系为直线关系的单纯线性回的关系为直线关系的单纯线性回归归(Simple Linear Regression)Simple Linear Regression)相关和回归分析相关和回归分析相关和回归分析相关和回归分析 18通过样本推测的直线通过样本推测的直线未知的真实直线未知的真实直线 Y Yi i=+x xi i+i i (i i=1,.=1,.,n n)i i 是相互独立的 遵守N(0,2)的概率变量单纯线性回归模型单纯线性回归模型i ie ei i(x xi i,y yi i)x xy y在这里在这里,i i iid iid N(0,N(0,2 2)ModelModel 定义定义 一个独立变量(x)与 一个从属变量(Y)间的关系方程式化后显示的方法相关和回归分析相关和回归分析相关和回归分析相关和回归分析 19将误差平方和最小化的推断方法,找出将残差平方最小化的直线.420 410 400 390 380 370 360 350 340 330 320 350 400 450 独立变量独立变量 从属变量最小平方和的单纯回归最小平方和的单纯回归单纯回归直线单纯回归直线与回归直线的与回归直线的差异差异(误差误差)直线是以直线是以“最小平方和推断法最小平方和推断法(least square estimation)least square estimation)”的的原则画出的原则画出的.从资料的点到直线从资料的点到直线的距离的平方和最小化的距离的平方和最小化.相关和回归分析相关和回归分析相关和回归分析相关和回归分析 20e eb bScatter Plot Y vs.X with Fitted LineScatter Plot Y vs.X with Fitted LineY=a+Y=a+bXbX直线的方程式是直线的方程式是 Y=a+Y=a+bXbX a a是是 常数常数,b,b是斜率是斜率.“拟合线拟合线”是包括实际点和直线的是包括实际点和直线的平平 方差的和最小化后形成的直线方差的和最小化后形成的直线.实际资料的点和直线的差异称为实际资料的点和直线的差异称为 残差残差(residuals(e).residuals(e).拟合线拟合线,回归方程式构造回归方程式构造相关和回归分析相关和回归分析相关和回归分析相关和回归分析 21残差(e)是对误差的最佳推断值,是实际结果值和回归方程式推测的最佳值间的差异.残差:实际观测值(yi)和推测值 的差残差越小推断的回归式更能说明实际结果,残差是误差的最好的推断值.残差按大小排列或按资料的顺序排列时,它们以“0”为轴相对称,并且不能存在特别的倾向.相关和回归分析相关和回归分析相关和回归分析相关和回归分析 22大家用MINITAB对上述数据进行回归分析.打开打开:A A1313.mtwmtw.下面是对硅胶强度有重要影响的SiO2使用量的关系的分析数据.事例分析事例分析相关和回归分析相关和回归分析相关和回归分析相关和回归分析 23Graph Graph PlotPlot从散点图看似乎有一从散点图看似乎有一定相关性定相关性!那么要进一步分析有那么要进一步分析有多少相关性多少相关性.相关和回归分析相关和回归分析相关和回归分析相关和回归分析 24Stat Regression Regression回归方程式回归方程式方差分析方差分析相关和回归分析相关和回归分析相关和回归分析相关和回归分析 25s:残差(误差)的标准差。

      残差为观测值预测值换句话说,指观 测点至回归方程式中描述的拟合线的距离对于优秀的模型,此值应较小)s=MS(error)1/2R-Sq:由拟合线能够“解释”的总变差的百分数由“X”解释的变差对于优秀的模型,此值应较大)R-Sq(adj):对过于拟合情况(方程式中的变量过多)的调整,它将包括 模型中的项数与观测值的个数进行对比 其中 n=观测值数量 p=模型中项数,包括常数判断的方法判断的方法New相关和回归分析相关和回归分析相关和回归分析相关和回归分析 26“X”变量的变量的p值值-速度速度 Ho:斜率=0 H1:斜率=0 或者,另一种表达方式:Ho:“X”不显著 H1:“X”显著常数常数的的p-值值H0:直线通过原点(0,0)(0硬度=0使用量)H1:直线不通过原点(0,0)结果判断结果判断R2越大,模型对工序模拟得越好越大,模型对工序模拟得越好New相关和回归分析相关和回归分析相关和回归分析相关和回归分析 27SSregression:由模型中的“X”解释变量“Y”的变动 每一X值对应的模型预测值和Y的总平均值之 差的平方和SSerror:未被解释未被解释的“Y”的变差每个数据点的Y观测 值和该 数据点Y的预测值之差的平方和。

      值 越小越好SStotal:Y值相对其平均值的总变差结果判断结果判断回归项(的SS 和 MS)应比误差项的(SS 和 MS)大通过查看通过查看R-Sq,R-Sq(adj),s和和p值来评估模型值来评估模型p-值应值应 Regression Stat Regression Fitted Line Plot(Fitted Line Plot(拟合线拟合线)R-sqR-sq值称为决定系数值称为决定系数,用用R R2 2 表示表示,范围是范围是0 0 R R2 2 1,1,R R2 2 越接近越接近 1 1时可以说明越接时可以说明越接近回归线近回归线.相关和回归分析相关和回归分析相关和回归分析相关和回归分析 29Stat Regression Stat Regression Fitted Line PlotFitted Line Plot 残差分析残差分析Storage Storage OprionOprion中选择中选择ResidualResidual和和 FitsFits时时,可可得出如下数据得出如下数据.相关和回归分析相关和回归分析相关和回归分析相关和回归分析 30Stat Regression Stat Regression Residual Plots(Residual Plots(残差图表残差图表)残差具有多少正态性残差具有多少正态性条状图是钟型的曲线吗条状图是钟型的曲线吗?要无视要无视(30)(30)以下的资料以下的资料.个别残差能看出多少倾个别残差能看出多少倾向向?或异常点或异常点?是否没有倾向是否没有倾向,对对“0 0”是随机的是随机的?相关和回归分析相关和回归分析相关和回归分析相关和回归分析 31回归分析结果解释回归分析结果解释 SiO2的使用量(X)与强度(Y)间的推断回归式是 强度强度(Y)=3.07+6.9 Y)=3.07+6.9 SiOSiO2 2使用量使用量(X)X).且两个变量回归系数为72%,可以说具有强的关系.(使。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.