
荷兰IHCS280液压锤的使用与效益.pdf
13页1 荷兰 IHC-S280 液压锤的使用与效益李望东文琳(中港第一航务工程局天津300042)内容概述:由于我国水工事业的快速发展, 原有的一些船舶施工设备已无法承揽工程,必须更新改造具有先进技术的S280液压打桩锤替代了过去的柴油锤; 但在使用中却遇到了许多新难题邀请了荷兰制造厂专家现场指导,并进行了技术培训,提高了技术水平,合理使用,正确保养,使之发挥越来越明显的效益,提高了企业的声誉与竞争力关键词:液压双作用能量效益近几年我国迅速与国际接轨, 外贸运输事业飞速发展, 大大促进了各地港口规模的扩大,并逐步向外海深水域发展,以适应第四代、第五代大型集装箱运输船舶的停靠与装卸需要作为国际大都市——上海市计划发展成为国际港口货物集散中心,已在临海的大、 小洋山岛建设集装箱深水码头; 与之相配套的大型工程是一座三十二公里长的东海大桥建设项目我局作为国内最大的水工建筑企业,为适应经济建设的新局面,与时俱进,开拓进取,投入了大量资金,不仅将过去的一些旧设备更新改造,提高其施工性能, 而且还购置与新造了一大批技术先进的大型船舶施工机械 其中,最为显著的成效就是从日本购买了一艘国际2 最先进的 700 吨全旋转式多功能工程船舶——天威号;并及时地投入了上海市重点工程——东海大桥项目施工。
如图1 所示该船不仅集中了世界上许多先进国家的新技术、新材料、新设备,而且适用于最严酷的海况,施工能力最强,作业效率最快,实属于第二代最先进的打桩兼起重船 其中,施工专用设备可配置各种规格型号的液压打桩锤,如表1 所示3 “天威”可配置液压打桩锤表 1 型号荷兰 IHC 日本车辆 性能S-200 S-280 S-400 NH-150B 最大打击能量: KJ/击200 280 400 235 最小打击能量: KJ/击10 10 20 30 打击频率:击 /分钟45 45 45 19~53 冲击活塞重量: t 10 13.5 20 15 打桩锤重量: t 24.5 29 47 33.5 动力站功率: KW 435 450 1100 过去我们打桩作业采用柴油打桩锤,并且,随着码头建设规模的不断扩大,我们所使用的锤也从小能量发展至最大能量的D-125 型柴油锤由于长年使用,积累了许多经验,并且完善了柴油打桩锤的操作规程和维修保养办法, 可以随时自修, 消除柴油锤的各种故障和隐患,保证施工有序进行然而,发展至今日,海上工程的项目越来越大, 柴油打桩锤的能量已满足不了桩基承载力的需要,必须更新换代,利用更大能量的液压打桩锤才能适应现代大型工程建设的局面。
为此,我们必须再学习, 了解液压锤的性能与构造, 提高技术业务水平前两年,我局曾先后组织了多次技术讲座,聘请了六家国际著名的液压打桩锤生产与施工企业来我局进行技术交流,充分了解当今液压锤的发展新技术其中,荷兰IHC 公司制造的液压打桩锤最具竞争力,我们在“天威”打桩船上就采用了该厂生产的S280型液压锤在东海大桥工程施工的前期, 我们首先利用的是D-125 型柴油打桩锤,其桥墩基础的桩长为58 米钢管桩,打桩过程中,甲方委托某质量检测中心进行动测试验,其试验结果如表2 所示东海大桥 G 组桩高应变动测(初打)试验结果表 2 4 D-125 柴油打桩锤试验桩号设计桩号桩长(m)桩尖标高(m)最终贯入度(m m/击)总锤击数(击)最大锤击力( KN )静土阻力 (KN )桩身完整性系数( %)S1 10 58 -53.53 1.28 4042 13900 11400 80 S2 11 58 -53.0 2.63 3375 13300 11100 80 M1 1 58 -53.46 3.85 3049 12800 11000 81 M3 3 58 -54.0 6.67 2483 13100 10400 82 M5 5 58 -53.76 2.63 2708 13200 11000 77 M16 16 58 -54.0 4.00 2745 13300 10700 75 M18 18 58 -53.56 3.33 3005 12400 10800 72 M20 20 58 -54.0 5.00 2333 13000 10500 77 从表中第一行即可看出, 该锤的打桩能量已发挥至最大, 其最终贯入度仅为1.28mm/击,最大锤击力为13900KN ,静土阻力为11400KN。
当施工至东海大桥港桥连接段时,基础桩尺寸加大,桩长为 77 米钢管桩,重量达64 吨为了测算 D125 柴油打桩锤能否按要求将这批长桩打入, 我们根据德国 Delmag 公司提供的 D 系列柴油锤打桩能力的计算公式进行核算情况如下:Hlley Formula 打桩公式 W=QRQkRccckSE2321)(; 式中: W——桩承载力单位吨E=R×h 锤的打桩能量,mkg; S——最后收锤贯入度, mm;R——冲击活塞重量,kg;Q——桩的重量,kg;C1——桩帽因素,mm; C2——钢桩因素,mm; C2——土层因素,mm; 5 k——D 系列柴油打桩锤的效率因素我们按照设计要求,桩的承载力必须达到1200 吨,并将D125柴油锤的技术参数与桩的长度及重量值代入该公式内,其结果计算出S——最后收锤的贯入度为0.02mm,远远小于该锤最小贯入度1mm的规定显然说明D125 柴油打桩锤因能量所限是无法完成这批长桩的植入任务为此,我们采用荷兰IHC-S280 液压打桩锤进行这批桩的施打;同样,打桩过程中甲方亦委托了该质量检测中心进行动测试验,其报告如表 3 所示作者简介:李望东: (1946——)中港第一航务工程局高级工程师文琳: (1964——)中港第一航务工程局高级工程师6 与柴油锤比较即可看出现代大型工程超长桩施工必须采用能量更大的液压打桩锤。
S280 液压锤为我们顺利完成东海大桥桩基任务起到了关键性的保证作用今年 10 月份, “天威”打桩船进入杭州湾跨海大桥工程领域,同期参与施工还有二航局、 三航局兄弟企业 我局因有全国施工能力最强的打桩船, 所以承担了杭州湾跨海大桥桩基最长、施工难度最大的7 打桩任务为了说明液压打桩锤的优势, 我们可以比较液压锤与柴油锤主要技术性能状况,重点分析这两种锤的能量转换问题某局在东海大桥打桩施工中曾使用D128 柴油打桩锤,其主要技术性能参数与 S280液压打桩锤比较如表4 所示柴油锤与液压锤主要技术性能比较表 4 技术性能最 大 打 击 能 量打击频率最 大 活 塞 冲 程活塞重量锤重量型号kNm 击/分m tt D128 柴油锤426.5 36~45 3.4 12.8 27 S280液压锤280 45 1.2 13.6 29 从该表中显示柴油锤的最大打击能量远比液压锤的能量大得多,约 1.5倍之间的关系但是,由于两种锤的工作原理不同,各自施打的能量传递至桩上的能量比例也不尽相同,我们可称为打桩能量有效率据相关资料介绍: 一般柴油锤的打桩能量有效率约45%;而液压锤的打桩能量有效率约90%。
我们核准东海大桥桩基施工的动测试验也可验证这两种锤的打桩能量有效率其中,表5 为 D128 柴油锤打桩动测试验报告数据D128 柴油锤打桩动测试验报告表 5 主要参数桩长最大锤击 力最大活塞 冲程打击频率桩身所受 最大能量静土阻力打桩锤型号m kN m 击/分kNm kN D128 柴油锤60 14700 3.655 34.2 127 13700 通过表 4 与表 5 的对照,可看出以下两个问题:(1) D128 柴油锤在超负荷作业:从最大活塞冲程值比较:3.655>3.4;从打击频率比较: 34.2 362) D128 柴油锤的打桩能量有效率=桩身所受最大能量 /最大8 打击能量× 100% 即:127 426.5=0.3=30% 而从表 3 中又可计算 S280液压锤的打桩能量有效率为:122 160=0.76=76%;131 165=0.79=79%;重新再看表4,若再添一项性能参数——最大有效能量,那么D128 柴油锤应填 128 kNm,而 S280液压锤应填 213 kNm从而验证了液压锤的打桩能量有效率远高于柴油锤的打桩能量有效率为了进一步说明其中原因,我们不妨可从两种锤的不同工作原理去分析。
柴油打桩锤的工作原理就如同单缸二冲程柴油机:当上活塞从锤顶端自由落体下降时,压缩缸体内的气体,适时燃油泵喷油,发生爆燃,加大锤击能量,直至上活塞撞击下活塞,将冲击能再传递至砧与桩顶使桩下沉 沉桩同时又反作用于下活塞, 其反弹力再传递至上活塞,使之升高至锤顶端,然后又可继续循环作业我们根据能量守恒定律归纳为如下转换关系:(上活塞) 势能动能+燃烧热能 =桩下沉吸收的能量 +上、下活塞运动摩阻力 +反弹动能(上活塞)势能由此可見,真正使桩下沉的有效能量所占比例较小;尤其是斜桩,上、下活塞运动摩擦阻力更大,使得柴油锤的打桩能量有效率仅为30%9 荷兰 IHC 液压打桩锤的工作原理如图2 所示:该锤仅有一个活塞,其上升运动是由液压能驱动活塞至锤顶端;然后,活塞在锤顶压缩空气的作用下快速下降,最大加速度可达 2g,使该活塞直接撞击砧与桩顶,使桩下沉再下一循环又是压力油驱动活塞上升,不断往复进行锤击根据能量守恒定律也可 归纳 为 如下转 换 关系:液压能活塞势能 +压缩气体动能 =桩下沉吸收的能量+活塞运动摩阻力如此与柴油锤比较能量转换有两大区别:(1)液压锤不需耗费自身能量,而是依靠外来的液压能使活塞上升运动;(2)液压锤仅有一个活塞,且润滑状况良好,运动摩阻力很小。
所以,液压锤使桩下沉的有效能量所占比例较大,即液压锤的打10 桩能量有效率在 76%以上 这就是液压打桩锤的最大优势; 换句话说,在打桩锤重量相似的情况下, 液压锤打至桩体上的有效能量远大于柴油锤的有效能量,这也是我们“天威”打桩船配置S280 液压锤的根本原因,也代表着施工设备的先进性我们“天威”船在使用S280 液压锤进行外海打桩作业时,也有一个逐渐摸索、不断提高的过程液压打桩锤与柴油锤使用中比较,最大的问题就是液压锤有四根软管(油管、气管与电缆)从动力站连至锤顶上,打桩作业时悬挂的软管很容易碰伤损坏,必须十分小心操作我们使用了几个月后, 发现打桩时软管抖动越来越严重,而且锤击能量也在下降 当我们认真研究该锤使用说明书时,发现有许多维护保养项目是在购船过程中,日本船东没有交代过的,甚至日方“误导” ,所教的方法还有与使用说明书相矛盾的为此,我局领导及时邀请荷兰IHC 液压锤制造厂的专家来我们施工现场进行技术培训,并帮助我们全面检查保养液压锤, 及时消除了许多故障或隐患 例如,打桩过程中液压软管抖动的原因主要是锤体内储能器的氮气压力过低,起不到吸收并缓冲液压撞击力的作用经过实际测试,我们使用的液压锤回油侧的储能器内已无氮气。
荷兰专家帮助我们, 按规定要求的压力充氮;结果很理想,开锤击桩后液压软管就不再抖动了由此,我们在制订日常保养的项目时就增加了该项内容:定期测试储能器内的氮气压力, 不足时应按要求压力及时补充从而更加完善了液压打桩锤的维护保养管理制度使用液压锤,操作很简单,但其内部结构却很复杂荷兰IHC 液压锤属于双作用式打桩锤,它不仅依靠11 活塞的自由下落冲击桩体, 而且锤顶还有压缩空气增加活塞下降的冲击力因此,这种锤不仅有一套液压系统,而且还有一套气动系统,并且这两套系统的动作又靠电气控制来操作所以,液压、气动、电气三大系统互为一体, 缺一不可这也是液压锤打桩时出现意外很难判断清楚、排除故障比较复杂的原因所在前阶段打桩时,液压锤的能量无法调至最大值经过荷兰专家的培训,我们才知道:当初在接船交涉中,日本船东仅告诉我们一个办法,只教我们通过柴油机的增速来加大液压泵排量与压力, 以此增加液压锤的打桩能量 这仅仅是一个方面调整措施;另一方面措施:还需增高压缩空气的压力,从20bar可升至 25bar;空气压力增高,作用在活塞下降时。
