好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

原子物理学-第五章ppt课件.ppt

84页
  • 卖家[上传人]:des****85
  • 文档编号:238104079
  • 上传时间:2022-01-11
  • 文档格式:PPT
  • 文档大小:2.51MB
  • / 84 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第五章第五章 多电子原子:多电子原子:泡利原理泡利原理主要内容:主要内容:2 2、两个电子的耦合、两个电子的耦合3 3、泡利不相容原理、泡利不相容原理4 4、元素周期表、元素周期表1 1、氦原子光谱和能级、氦原子光谱和能级重重 点:点:1 1、电子的、电子的L-SL-S耦合耦合2 2、电子组态、电子组态、原子态原子态3 3、泡利不相容原理泡利不相容原理4 4、元素周期表元素周期表 在前面我们讨论了单电子原子核具有一个价电子的原子的光谱以及它们的能级情况,说明了能级的精细结构 在这一章中,我们将讨论多电子原子,即具有一个以上电子的原子凡是有两个及两个以上核外电子的原子,在力学上都属于“多体系统”,多体问题是不能精确求解的,在量子力学中也需要用复杂的近似方法来进行计算对于原子,除氢以外都可以看作“复杂”原子 我们首先通过最简单的多电子原子氦原子的能级和光谱特点的认识,引入微观世界中全同粒子的一些独特性质,泡利不相容原理等重要物理概念复习H原子: 类H离子: 碱金属原子: 若核(实)外有两个电子,由两个价电子跃迁而形成的光谱如何?能级如何?原子态如何?He:Z=2Be:Z=4=212+2Mg:Z=12=2(12+22)+2Ca:Z=20=2(12+22+22)+2Sr:Z=38=2(12+22+32+22)+2Ba:Z=56=2(12+22+32+32+22)+2Ra:Z=88=2(12+22+32+42+32+22)+2 在实验观察中发现,氦以及周期系第二族元素,铍、镁、钙、锶、钡、镭等的光谱都具有相仿的结构。

      从这些元素的光谱,可以得到它们的能级都分成两套,一套是单层的,另一套是具有三层结构的下面具体讨论氦原子的光谱和能级 5.15.1、氦的光谱和能级、氦的光谱和能级 1868年在太阳日珥光谱中首次观察到了一条波长为587.5nm的黄色谱线,这条谱线不属于当时已知的元素的光谱线,被认为是一种新元素的谱线,这种元素称为氦(He) 氦原子是由原子核和两个电子组成的原子,是最简单的多电子原子实验发现,氦原子的光谱与碱金属类似也有各个谱线系,但不同的是氦原子有两套线系,即有两个主线系,两个第一和第二辅线系两套谱线的结构有显著的差别,一套谱线都是单线,另一套谱线却具有复杂的结构,如果用高分辨率的仪器,则可以观察到原来的一条谱线实际上包含有三条波长非常接近的成分 氦原子的能级有以下几个特点: 有两套能级一套能级是单层的,而另一套有三层结构,与这两套能级相对应的原子多重态称为单态和三重态在实验观测的光谱中没有发现存在三重态和单态之间的跃迁,这说明在两套能级间没有跃迁,只是由每套能级各自的跃迁产生了相应的两套光谱线系 基态和第一激发态之间的能量差很大,为19.77eV而氦的电离能是所有元素中最大的,其值为24.58eV。

      n=1的原子态不存在三重态 三重态的能级总是低于相应的单态的能级例如 比 高0.8eV 第一激发态 和 都是亚稳态,如果氦原子被激发到这两个状态,则通过辐射跃迁到基态的几率是极小的,这两个能级的寿命很长,实验测得 的寿命为19.5毫秒氦原子能级图 在氦的能级图中,除基态外,所有能级都是一个电子留在最低态,另一个电子被激发所形成的图中,最高能级是第二个电子被电离,剩下一个价电子在最低态时的能级也有可能两个都被激发,但那样需要更大的能量,很难观察到 5.25.2、两个电子的耦合、两个电子的耦合一、电子的组态 原子中的原子实是一个稳固完整的结构,它的总角动量和总磁矩是零因此讨论原子态的形成,不需要考虑原子实,只要从价电子来考虑就可以了对于我们所讨论的对象,具有两个价电子,这两个价电子可以处在各种状态,它们合称电子组态,也即是由原子中各电子的主量子数和角量子数所表示的原子状态 电子组态清楚地显示出核外电子的排布状况 氦原子在基态时,两个电子都在1s态,我们说这个状态的电子组态为1s1s再如,镁在第一激发态时,一个电子留在3s态,一个电子被激发到3p态,那么这时的电子组态时3s3p而镁的基态的电子组态是3s3s。

      不同的电子组态具有不同的能量,有时差别很大对于氦,在电子组态1s2s与1s1s之间的能量相差很大,这是由于有一个电子的主量子数n不同对于镁,3s3p与3s3s电子组态之间也存在能量差别,这是由于虽然主量子数没有变化,但是角量子数l有差别,引起原子实的极化或轨道贯穿的结果总之,大的能级差别是由于电子组态的不同引起的 一种组态中的两个电子由于相互作用可以形成不同的原子态两个电子各自有其轨道运动和自旋这四种运动会相互起作用,每一种运动都产生磁场,因此对其他运动都会产生影响这样它们之间就可以有六种相互作用 这六种相互作用的强弱是不同的,而且在各种原子中的情况也不一样一般来说, 和 是比较弱的,通常可以忽略 二、L-S 和j-j 耦合 剩下四种运动中,对于比较轻的元素的原子, 比 比 强得多;对于比较重的元素的原子, 比 强得多因而当电子组态形成原子态时,采用 相互作用的方式简称LS耦合;采用 相互作用的方式简称jj耦合 也就是说,L-S耦合表示每个电子自身的自旋与轨道运动之间的相互作用比较弱,主要的耦合发生在不同电子之间;而j-j耦合则表示每个电子自身的自旋与轨道耦合比较强,不同电子之间的耦合比较弱。

      1、L-S耦合首先来看自旋总角动量的情况总的自旋角动量为 在这种情况中,两个自旋运动要合成一个总的自旋运动,两个自旋角动量和都绕着自旋总角动量进动,即 对于轨道运动的情况也类似,即 然后,轨道总角动量和自旋总角动量合成总角动量 其中S是合成的自旋总角动量量子数,它的值只能取1或0也就是说,两个电子的自旋角动量合成的自旋总角动量只能有两个可能的数值 再来看轨道总角动量的情况总的轨道角动量为这样,如果 ,那么L就有 个取值,对于两个电子,就有好几个可能的轨道总角动量 例如,设两个电子的轨道角动量量子数分别为 和 ,那么各自的轨道角动量是 由L的取值可知 所以,轨道总角动量为 即可以形成五种可能的轨道总角动量 最后来看,轨道总角动量和自旋总角动量合成原子的总角动量的情况 同样,如果对于 ,J共有 个取值对具有两个价电子的原子,S只有两个取值0或1 当S=0时,对每一个L,有 即只有一个能级,是一个单一态 当S=1时,对每一个L,有 即有三个能级,所以是三重态这就说明了为什么具有两个价电子的原子都有单一态和三重态的能级结构 例1、求电子组态为 的某二价原子形成的原子态 解:由电子的自旋及轨道总角动量量子数的表达式可知,自旋总角动量量子数为S=1,0;轨道总角动量量子数为L=1,2,3。

      进而可以得到总角动量量子数J如下表 SLJ原子态符号012312311232,1,03,2,14,3,2 总之,在LS耦合中,四种相互作用共同影响如图所示两个电子的自旋相互作用 很强,相当于S=0和1的单一态和三重态没有考虑相互作用时,能级上下分开很远;轨道运动的相互作用 又使不同L值的能级,即P、D、F能级再分开;而弱相互作用 和 又使不同J值的能级又稍分开一些 洪特定则 1925年,洪特(Hund)提出了一个规则来判断其最低能量项(基态),称为洪特定则,它只适用于LS耦合可以表述为:由同一个电子组态形成的能级中,S值最大的能级位置最低;S相同的能级中,L值最大的能级位置最低;当价电子数小于半满时,多重态中J值最小的能量最低,当价电子数大于半满时,J值最大的能量最低 洪特定则是作为经验规律提出来的,应用量子力学可以对它作出解释这个定则只能判断LS耦合的各个原子态中的最低能量状态,不能用来判断其他光谱项之间的能量高低大多数原子的基态可以用LS耦合来讨论,因此利用洪特定则可以确定原子基态的量子数 例如, 组态通过LS耦合的三个原子态是 , 和 ,其中, 的S=1最大,它的能量最低,如图所示是Si原子基态组态 ,形成的三个原子态,其中 态确实能量最低。

      因此Si原子基态应为 再如, 组态的五个原子态中 和 的S=1最大,其中 的L=3比 的L=1大,因此, 态能量最低 电子组态例2、试确定硫原子的基态的量子数 解:硫原子的原子序数Z=16,它基态时的电子组态为 对p壳层最多可容纳的电子数是6,即硫原子基态时p壳层还有两个空位 由于满壳层的角动量量子数都为零,所以 可能组成的原子态和 的情况相同,只是多重态的能级次序相反因而我们先求 可能允许的原子态 它们应该是通过LS耦合为量子数L+S是偶数的态,分别是 其中S最大的态是 根据洪特定则,在 多重态中,J=2态的能级最低,故硫原子基态的量子数S=1,L=1,J=2,它的谱项表示为 朗德间隔定则 关于能级间隔的规律:在一个多重能级的结构中,能级的二相邻间隔同有关的二J值中较大那个成正比 对于有的情况,LS耦合模型并不是很好的近似,则朗德间隔定则就遵守得不好 例如,由Si原子基态组态 得到的 态中J=2,1,0 能量差 应正比于J=2; 而应正比于J=1 应该有 实际值为 ,与2十分接近 例3、已知某种原子的一个多重态有三个能级,相邻两对能级的间隔的比例为3:5,其能级结构如图所示试给出各能级对应的量子数S,L,J。

      解:设下面一对能级的间隔为 ,于是较高的一对能级的间隔为 已知相邻能级的J值差为1,所以若最低能级的J值为 ,则其他两个能级为 和 根据朗德间隔定则,得 由它们可以解得, 所以三能级的J值为:1/2,3/2,5/2 又根据 可知如果 ,则 如果 ,则 我们知道轨道角动量量子数一定是整数,所以第二种情况是不存在的这个多重态对应的量子数是 2、jj 耦合 在前面所说的六个相互作用中如果 比 强,那么电子的自旋角动量和轨道角动量合成各自的总角动量,即 ,自旋角动量和轨道角动量都绕着各自的总角动量进动然后两个电子的总角动量又合成原子的总角动量 这称为jj耦合 每个电子的总角动量为最后,再将两个电子的 合成原子的总角动量 例4、已知某二价原子的两个价电子的角动量量子数分别为 , , , ,试根据jj耦合方式确定该原子的总角动量状态 解:两个电子的角动量量子数为 和 的不同组合为 可以得到jj耦合时的各种状态,如下表所示 5/23/24,3,2,15/21/23,23/23/23,2,1,03/21/22,1 jj耦合条件下,电子自身的自旋与轨道角动量之间有较强的耦合作用;电子之间的角动量耦合较弱。

      这时系统的能量与量子数 和 的依赖关系较强,不同 、 的组合态的能量差别大;相同的 、 组合而不同的J之间能量差别小 例如锡原子(Sn)的激发组态5p6s服从jj耦合5p电子的 , ; 6s电子的 , 组合得到的光谱项可以表示为 于是可得到 四个状态 如图所示,可以看到,状态 和 之间的能量差比仅仅由于J不同而引起的能量差大 两种耦合方式的对比 前面两个例子是在相同电子组态下分别由LS和jj耦合模型给出的两种结果,它们都是12个状态,但分类方式明显不同 通过与测定的光谱相比较我们可以判断哪一种模型更符合实际 L-S耦合一般适合于质量较轻、处于低激发态的原子;jj耦合一般适合于质量较重、处于高激发态的原子 L-S耦合由不同的L,S组合给出六个相隔较大的能量状态,然后由不同J给出若干相隔较小的能量状态;jj耦合由不同的 、 组合给出两个相隔较大的能量状态,然后由不同的J给出若干相隔较小的能量状态现在举一个具体例子看一下LS耦合和jj耦合的对比情况 已知碳族元素C,Si,Ge,Sn,Pb在基态时最外层有两个p电子,其余电子构成完整的壳层这些元素在基态时的价电子的组态为 如果把这些元素在基态的一个p电子激发到高一级的s态,就得到它们的第一个激发态,可以表示为 ,考虑角动量耦合它们的能级都是四个能级,但它们的组合方式是不同的,如下图所示 碳族元素在激发态ps的能级比较C和Si的结构类似,按一、三分组,Sn和Pb的相似,按二、二分组。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.