好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

新版沪教版六年级数学下册教案第五章(2018新教材).pdf

20页
  • 卖家[上传人]:夏**
  • 文档编号:568624500
  • 上传时间:2024-07-25
  • 文档格式:PDF
  • 文档大小:953.52KB
  • / 20 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 沪教版六年级数学下册教案沪教版六年级数学下册教案5.15.1 有理数的意义有理数的意义教学目标教学目标1、理解负数的学习意义,感受数学来源于现实生活,激发学习数学的兴趣;2、掌握有理数的概念以及有理数的两种分类,能判断一个数是正数还是负数,运用正、负数表示生活中具有相反意义的量;3、通过自主探究,发现有理数的分类,形成分析问题,解决问题的能力;4、通过了解负数的历史,渗透德育教育,增强民族自豪感;5、渗透化归、分类的数学思想方法.教学重点教学重点: :有理数的概念以及分类教学难点教学难点: :有理数分类的探究以及分类中对小数的理解.教学准备教学准备: :PPT 辅助教学教学过程教学过程一、结合实例,情景引入一、结合实例,情景引入金茂大厦(420 米)比国际饭店(86 米)高几米?杨浦大桥桥面比黄浦江底高出多少米? 420-86=?48-(-10)=?【引入课题】【引入课题】--------5.1-5.1-有理数的意义(板书)有理数的意义(板书)1.复习旧知1)上学期已经学过的数,自然数、整数、分数,及之间的关系;2)分数可化化为有限小数和无限循环小数;3)π是一个无理数 2.引入新知由生活中常见的一些具有相反意义的量,让学生通过实际感受,从而概括出“正数和负数可以表示具有相反意义的量”“正数和负数可以表示具有相反意义的量” (强调注意相关量的单位)(强调注意相关量的单位) 。

      思考思考 1 1::1.如果把收入 50 元记作 50 元,那么下列各数分别表示什么意义?(1)20 元; (2) 2.5 元; (3)80元; (4)0 元.2.如果 6 摄氏度用6 C表示,那么零下 4 摄氏度如何表示?(强调书写格式)(强调书写格式) 二、探究新知,扩张数域二、探究新知,扩张数域1 1、引入正数,负数的概念:、引入正数,负数的概念:2 2、判断、判断: :“一个数如果不是正数,必定就是负数这句话对不对,为什么?例题例题 1 1把数12,71,2.8,,0,7,34%,0.67,,16123 129,分别填在表示正数和负数的圈里.4 75正数负数思考思考 2 2提问:提问:0 能放到以上两个圈中吗?3 3、强调:、强调:零既不是正数也不是负数 0 是正数和负数的分界 0 和正数又可称为非负数(重点强调)(重点强调)4 4、引导学生概括有理数的第一种分类:、引导学生概括有理数的第一种分类:有理数按正数、零、负数(大小)分类(板书)(板书)正整数正有理数正分数有理数零负整数负有理数负分数5 5、通过观察:、通过观察:71,-5,0 分别是一个正整数,负整数和零,它们都是整数.11 1293,7,都是正分数,而和是负分数,它们都是分数.62754引导学生概括有理数的第二种分类:引导学生概括有理数的第二种分类:有理数按整数、分数(特征)分类(板书)(板书) 正整数整数零负整数整数和分数统称为有理数.有理数分数正分数负分数说明:对于这个分类,学生的理解还是有困难的, 我们可以借助于数轴来帮助学生理解,也可以让学生们提问题,或学生之间讨论,学生的疑问出来了,我们就好引导了.学习了分数后,我们可以再说明一个问题,这个问题是十分重要的.如果我们把整数看成是分母为1 的分数,那么在这个意义下,所有的有理数都是分数.例题例题 2 2在下列数中,哪些是整数?哪些是正数?哪些是负数?哪些是有理数?(学生口答教师板书)(学生口答教师板书).1128, -3, 7, -, 69, 0, 0.32, 6.4, -1 ,, -3.1, 2.5%, -26526 6、说明:、说明:1)在这个题当中,要照顾到全体学生,争取每一个学生对这些概念都能理解,尤其有理数的概念,教师边提问边讲解。

      2)强调:强调:百分数、有限小数、无限循环小数都是分数;目前所学数域中,π是无理数π是无理数7 7、拓展:、拓展: 1 是不是整数?是不是分数,是不是有理数呢?0 是不是整数?是不是分数,是不是有理数呢?最小的整数有没有?最小的正整数有没有?三、巩固新知、形成技能三、巩固新知、形成技能1、课本 P4 练习 5.1;2、练习册 P1 习题 5.1 第 1、5 题;3、补充:5.选择题(1)下列说法中正确的是()(2)下列说法中正确的有()(A)整数就是正整数和负整数①有理数中没有最大数,也没有最小数(B)负整数的相反数就是非负整数②一个有理数的平方必大于原来的这个数(C)有理数中不是负数就是正数③一个数的倒数等于本身,这个数是1(D)0 是自然数,但不是正整数④一个数的平方等于本身,这个数是1 和-1(A)1 个(B)2 个(C)3 个(D)4 个四、布置作业、反馈反思课堂作业课堂作业 :练习册 5.1家庭作业家庭作业:1、完成《上海作业》5.1 2、预习《数学课本》5.2 P5-P7,5.25.2 数轴数轴教学目标教学目标1.通过解决实际问题的活动, 体会引入数轴的必要性和广泛的应用性, 初步理解数轴的意义.2. 理解数轴的意义,能在数轴上表示出任意一个有理数,并理解任何一个有理数都可以在数轴上表示出来.3.在积极思考积极参与讨论的活动中, 自觉改进学习,促进良好学习习惯的养成和沟通、 交流能力的提高.教学重点及难点:教学重点及难点:理解数轴的意义, 理解在数轴上, 表示互为相反数的两个点位于原点的两 侧,并且到原点的距离相等.教学过程设计教学过程设计教学内容教学内容教师活动教师活动学生活动学生活动备注备注情景引入看谁的知识掌握得扎实看谁的知识掌握得扎实学生可能答不出来,1.老师问:还记得如何画数轴吗?怎或答出一部分,老师和学生一起回答,并样用数轴上的点表示有理数?对回答的学生进行鼓励.也就是规定了原点、正方向和单位长度画一条水平直线,在的直线叫做数轴.这条直线上任取一点作为原点,再确定正方向和单位长度 .数轴的三个要素缺一不2.老师继续问:数轴有什么作用呢?可,其中正方向只有一个,一般规定向右此时我们可以告知学生:利用数轴可以的方向为正方向,且表示有理数,有理数都可以用数轴上的数轴无端点 .标数字时,通常把数字标在点表示,但数轴上的任意一并不是都表数轴的下方,而表示点的字母写在数轴的示有理数(不要强调)上方.学生可以答出数轴可不知道表示一些什么数,利用数轴可以比较有理数的大小 .数轴上从左往右的点表示的数是按从小到大的顺序,那么利用数轴可以比较数的大小.让学生先说出数轴上原点右面的点表示的数,对于位于数轴上3.老师继续问:数轴还有什么作用呢?以表示数的问题,但学 习 新复习数轴的概念复习数轴的概念 :小学时我们学过数轴,知道规定了原点、正方向和单位长课度的直线叫做数轴.比如 2 可以用数轴上的位于原点右边 2个单位的点表示,3.4可以用数轴上位于原点右边3.4个单位的点表示,1可2以用数轴上位于原点左面的1个单位的2点表示.任何一个有理数都可以用数轴上的一个点表示.例例 题题1 1指 出 下 图 数 轴 上 的 点A,B,C,D,E 分别表示什么数. 原点左面的点所表示EB的数,学生可能会答-2-101234-5-4-35错,比如 D 点表示的数到底是 4.5还是3.5,这个容易错的地方应该在学生最初学习的时候就及时思考思考 1 1提出来,避免以后犯老师提问:3 和-3,4 和-4,1和1这错.22三对数有什么相同点和不同点?只有符号不同的两个数,我们称其让学生观察中一个数为另一个数的 相反数相反数.也称这两个数互为相反数 .零的的相反数是零.课堂巩固练习课堂巩固练习小练习 1:你能举出一对互为相反数的数吗?小练习 2:a的相反数是 . a的相学生根据对相反数意反数是 .义的理解,说出几组小练习 3: a一定是个负数吗?相反数思考思考 2 2将 3 与-3,4 与-4,1与1这三对数学生通过积极的思考22和和画图,不难发现所表示的点分别标在数轴上加以观察,一个事实:你能发现什么?在数轴上,表示互为相反数的两个点位于-2-101234-5-4-35原点的两侧,并且与例例 题题 2 2 用 数 轴 上 的 点 分 别 表 示原点的距离相等.13,5,2,1.2和它们的相反数.学生自主练习,并交2再次强调:流1.只有符号不同的两个数,我们称其中一个数为另一个数的相反数 .也称这两个数互为相反数.零的的相反数是零.2.在数轴上,表示互为相反数的两个点位于原点的两侧,并且与原点的距离相等.拓展1.a的相反数是 a, a的相反数是a,a和 a互为相反数2. a不一定是个负数.思考 3学生讨论回答怎样表示出一个数的相反数呢?表示一个数的相反DCA练习 1,目的是调动学生的积极性.练习练习 3 3,,及时提醒学生们, a可以是正数,也可以是负数,也可以是零. 1)3 的相反数为 ;2)-3 的相反数为 ;,.数,也可以在这个数前添加一个“-” ,并得出结论:一个数一个数的的相相反反数数的的相相反反数数就是这个数的本身就是这个数的本身巩 固 练1 . 用 数 轴 上 的 点 分 别 表 示11和它们的相反数.3.5, ,2,0习342.下列那些数是相等的?那些数互为相反数?-5-4-3-2-1012345学生练习并交流1312.3,5,1,2,4.5,5,1,3.22102.3.以下叙述中,正确的是A.正数与负数互为相反数;B.表示相反意义的量的两个数互为相反数;C.任何有理数都是相反数;D.一个数的相反数是负数.自 主 小通过今天的课,你有什么收获?有什么请同学们畅所欲言结,深化感受?提高回 家 作完成练习册 5.2业5.35.3绝绝 对对 值值教学目标:教学目标:1.通过解决实际问题的活动, 体会引入绝对值的必要性和广泛的应用性, 初步理解绝对值的意义.2. 理解绝对值的意义,理解互为相反数的两个数的绝对值有什么关系,理解两个负数,绝对值大的那个数反而小.3.在积极思考积极参与讨论的活动中, 自觉改进学习,促进良好学习习惯的养成和沟通、 交流能力的提高.教学重点与难点:教学重点与难点:理解互为相反数的两个数的绝对值相等, 理解两个负数, 绝对值大的那个数反而小.教学用具准备:教学用具准备:粉笔、直尺,课件教学流程设计教学流程设计情景引入学习新课例题讲解 教学过程设计教学过程设计一、情景引入请你观察并回答:小丽家-6-5-4-3-2-1学校小明家1234560小明、小丽的家离学校多远?(单位长度表示1 千米)在数轴上点 A、点 B 所表示的数分别是 3 和5,它们与原点的距离分别是3 和 5,我们把 3叫做 3 的绝对值,5 叫做5的绝对值.思考思考 1 1::怎样表示一个数的绝对值呢?怎样求一个数的绝对值呢?二、学习新课绝对值的概念绝对值的概念 ::一个数在数轴上所对应的点与原点的距离,叫做这个数的绝对值.绝对值的表示:用符号a表示数a的绝对值,例如,4 的绝对值是 4,记作4  4,3的绝对值是3,记作3  3,0 的绝对值是 0,记作0  0,例题例题 1 1求3.7,12,0,31的绝对值.2解:3.7  3.7;12 12;0  0;311 3.22概括:概括:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.思考思考 1 1(1)数a的绝对值在数轴上表示什么意义?(2)互为相反数的两个数的绝对值有什么关系?学生们通过思考,讨论,可以发现互为相反数的两个数的绝对值是相等的, 但对于数a的绝对值在数轴上表示什么意义的这个问题还有些模糊.我们可以再举出一些例子,学生们通过思考可以进一步理解. 思考思考 2 2老师继续提问: 上节课我们提到数轴的作用还可以用于比较数的大小, 你能说说数轴上的点表示的数有什么特点吗?先请观察数轴.观察:观察:-5-4-3-2-1012345学生们可以观察到数轴上的点表示的数字从左到右越来越大:每一个有理数都可以在数轴上用唯一的一个点来表示, 这样就有了次序, 所以任何两个有理数都可以比较大小.在数轴上,右边的点所表示的数比左边的点所表示的数大.例如5>0,0>4,5>4.总之:正数大于零,零大于负数,正数大于负数.思考思考 3 3老师问:一个数的绝对值越大,说明这个数到原点的距离怎样呢?5 和7的绝对值哪个大?它们到原点的距离哪个远一些呢?2 和6的绝对值哪个大?它们到原点的距离哪个远一些呢?3和7的绝对值哪个大?它们到原点的距离哪个远一些呢?你发现了什么规律?你发现了什么规律?学生们在思考,讨论中可以容易发现: 一个数所表示的点离开原点的距离越远, 绝对值越大,离开原点的距离越近,绝对值越小.说明:对于两个负数的大小的比较, 是学生们理解的难点, 我们可以借助于绝对值来帮助学生理解,所以在理解 “一个数所表示的点离开原点的距离越远,绝对值越大,离开原点的距离越近,绝对值越小”的这个问题上,我们要多给学生们思考和探索的时间,学生们思考和探索的时间越长,理解的将越深刻.例题例题 2 2用数轴上的点表示下列各数,并将它们从小到大排列起来:15,0,1,4.5,12解:把上述各数所表示的点分别标在数轴上:-6-5-4-3-2-10123456从数轴上看,它们的大小的次序是:11,1,0,4.5,5.21即:1<1<0<4.5<5.2在这个例题当中,要照顾到全体学生,争取每一个学生都会在数轴上表示出一个点,尤其是1的这个数,到底是标在1表示的点的左边还是右边,一定要使学生真正理解.例题例题 3 3比较3.5与 2解:把3.5,2123的大小.53所表示的点分别标在数轴上:5 -6-5-4-3-2-10123456从数轴上看,表示 233的点在表示3.5的点的右边,所以 2>3.5.55在这个例题当中, 要照顾到全体学生, 争取每一个学生都会在数轴上表示出一个点 ,尤其是1的这个数,到底是标在1表示的点的左边还是右边,一定要使学生真正理解.思考思考 4 4::如何比较3.5和 2123的大小呢?533 2553.5  3.5,, 2因为3.5>233,所以3.5> 2.55拓展拓展两个负数,绝对值大的那个数反而小.三、巩固练习1.在数轴上,到原点的距离等于3.5个单位长度的点所表示的有理数是 .2.什么数的绝对值是它本身?什么数的绝对值是它的相反数?3.写出绝对值小于 5 的整数,并把它们表示在数轴上.4.当a为有理数时, a一定是负数吗?5.比较大小:(1)437与0,26与0137(3) 0.3%与-17(2) 四、布置作业 1 . 课本和练习册上的练习2 . 复习所学的知识 3 . 预习新课5.45.4 有理数的加法有理数的加法教学目标教学目标1.通过学习,能感受到数学知识来源于生活又可应用于实际生活,激发学习数学的兴趣。

      2.通过探索,能归纳总结出有理数加法法则,理解有理数加法的意义3.掌握有理数加法法则,并能准确地进行有理数加法运算教学重点及难点:教学重点及难点:有理数的加法法则 ;异号两数相加的法则教学流程设计教学流程设计提出问题问题探究、解决知识点概括知识点巩固应用小结 教学过程设计教学过程设计一、设置情境,提出问题一、设置情境,提出问题在小学我们已经学习了正有理数及 0 的加法运算,在初中我们学习了负有理数负有理数怎样参加加法运算呢?让我们一起来学习1 1.提出问题.提出问题小明在一条东西向的跑道上,先走了5 米,又走了3 米,能否确定他现在位于原来位置的哪个方向?相距多少米?(规定向东的方向为正方向)二、探索、解决问题探索、解决问题1 1.通过学生思考讨论,使学生分析得到首先应确定小明走动路线有几种情况.通过学生思考讨论,使学生分析得到首先应确定小明走动路线有几种情况有以下四种走动的情况:(1)两次都向东走,(2)两次都向西走(3)先向东走,再向西走(4)先向西走,再向东走2 2.引导学生分析每一种情况,并在数轴上表示出来.引导学生分析每一种情况,并在数轴上表示出来1)向东走 5 米,再向东走 3 米,一共向东走了多少米?+5+301234+85678 (+5) + (+3) = +8(2)向西走- 5 米,再向西走- 3 米,一共向东走了多少米?-3-5-8-7-6-5-4-3-2-10-8( -3 )+ ( - 5)=-8(3)先向东走 5 米,再向西走 3 米,两次一共向东走了多少米? +5-2-101+223-3456(+5)+(-3)=2(4)先向西走 5 米,再向东走 3 米,两次一共向东走了多少米?-5+3-6-5-4-3-2-1012-2(-5)+(+3)= - 23 3.教师进一步提出两种特殊的情况,学生思考回答.教师进一步提出两种特殊的情况,学生思考回答(5)向东走5米,再向西走5米,两次一共向东走了多少米?+5-50123456(+5)+(-5)=0(6)向西走5米,再向东走0 米,两次一共向东走了多少米?-5-5-4-3-2-101(-5)+0=-5三、知识点的概括知识点的概括1 1、引导学生对前面的六个加法运算进行合理的分类、引导学生对前面的六个加法运算进行合理的分类同号两数相加:(+5)+(+3)=+8 (-5)+(-3)=-8异号两数相加: (+5)+(-3)=2(-5)+(+3)=-2(+5)+(-5)=0一数与零相加: (-5)+ 0 = -52 2、学生归纳总结:、学生归纳总结:同号两数相加,取原来的符号,并把绝对值相加。

      异号两数相加,绝对值相等时和为零 绝对值不相等时,其和的绝对值为较大的绝对值减去较小的绝对值所得的差,和的符号取绝对值较大的加数的符号一个数同零相加,仍得这个数四、例题和练习四、例题和练习例:计算(1) (-5)+(-7) ; (2) (-3.2)+ (+ 5) 练习:六年级第二学期课本P13 练习 5.4(1) 五、小结五、小结学生自主小结,教师加以补充注重学生的学习体验和主体意识的培养:1、知识点归纳2、学生学习的感受和体会以及存在问题质疑5.55.5 有理数的减法有理数的减法教学目标:教学目标:1、通过对实际问题的探索,能认识到数学来源于生活实际,激发学习的兴趣.2、通过学习,渗透转化的数学思想,初步具有一定的数学素养.3、学生能掌握有理数减法法则并熟练的进行有理数减法运算教学重点和难点:教学重点和难点:理解有理数减法转化成加法来运算.教学流程设计:教学流程设计:提出问题探索解决问题 知识点概括举例应用小结教学过程教学过程一、创设情景,提出问题:一、创设情景,提出问题:1 1、提问:上海冬天的某两天的天气温度情况如下表所示(投影)、提问:上海冬天的某两天的天气温度情况如下表所示(投影)第一天第二天最高温度(℃)最低温度(℃) 6.8 2 3.2 -2.5两天中哪一天的温差比较大?两天中哪一天的温差比较大?2 2、要求学生列出算式、要求学生列出算式: 6.8 – 2 ; 3.2 – ( -2.5)提问提问 6.8-2 = 4 , 那么如何求那么如何求 3.2-(-2.5)?3 3、学生各抒己见、学生各抒己见二、知识新授二、知识新授1 1、整理、整理 教师小结学生想法,并与学生一起推理如下:因为减法是加法的逆运算,5.7+(-2.5)=3.2所以 3.2-(-2.5)=5.7而 3.2+2.5=5.7所以 3.2-(-2.5)= 3.2 + 2.52 2、学生观察思考、学生观察思考观察以上最后一个等式, 里面发生了怎样的变化, 对你进行有理数的减法运算有什么启发? 3.2-(-2.5)= 3.2 + 2.5相反数减法变加法请学生在有理数范围内任举两数相减,通过以上方法的尝试,自己认识减法可以转化为加法计算.3 3、归纳小结、归纳小结有理数的减法法则:减去一个数,等于加上这个数的相反数.即a b  a (b)三、举例三、举例例 1 计算:(1)6-(-6)(2)0-9(3)53(4)1例 2杨浦大桥桥面在黄浦江江面上方48 米,江底在水面下方约10 米,桥面与江底相距约多少米?解:设水面上方为正,那么48-(-10)=48+10=58(米)答:桥面与江底相距约 58 米.四、课堂练习四、课堂练习练习 5.5五、课堂小结:五、课堂小结:1、 由于将减数变成了它的相反数, 所以有理数的减法可以转化成加法来运算, 这样有理数的加减法可以统一成加法运算了.2、不论减数是正数、负数还是零,都符合有理数的减法法则.在使用法则时要注意被减数是永不变的.5.6(1)5.6(1)有理数的乘法有理数的乘法教学目标教学目标1. 经历有理数乘法这一知识的产生过程, 规律的发现过程, 了解有理数乘法的实际意义,理解有理数的乘法法则,初步形成自主学习知识的能力。

      2. 掌握有理数的乘法法则,正确、熟练地进行有理数的乘法运算教学重点与难点教学重点与难点1. 重点:了解有理数乘法意义,会根据有理数乘法法则进行有理数的乘法运算2. 难点:有理数乘法运算法则的推导教学用具准备:教学用具准备:多媒体设备12141123 教学过程设计教学过程设计一、创设问题情境前面学习了有理数的加减法,同学们先看下面的问题:【思考 1】计算:①2×1=;②(-2)×1=;③2×(-1)=;④(-2)×(-1)= .质疑导入: 2×1 是我们小学就学过的乘法, 你能否用学过的知识来解释其它题目的结果呢?[ [说明说明] ]思考思考 1 1 旨在引出本节课题:旨在引出本节课题: (含有负数的)有理数的乘法由①②得一个数乘以(含有负数的)有理数的乘法由①②得一个数乘以1 1 等等于这个数本身;③可从加法角度解释,由③得一个数乘以于这个数本身;③可从加法角度解释,由③得一个数乘以( (--1)1)等于这个数的相反数,并用等于这个数的相反数,并用这一结论可解释④二、这一结论可解释④二、探索新知【思考 2】一辆汽车以平均每小时 80 千米的速度沿着东西方向的公路行驶。

      现在它在公路的 A 处1)如果它向东行驶 2 小时,那么它位于 A 处的哪个方向?与 A 处相距多少千米?(2)如果它向西行驶 2 小时,那么它位于 A 处的哪个方向?与 A 处相距多少千米?(3)如果它以前一直在向东行驶,那么它2 小时前它位于 A 处的哪个方向?与 A 处相距多少千米?(4)如果它以前一直在向西行驶,那么它2 小时前它位于 A 处的哪个方向?与 A 处相距多少千米?分析:为区分方向:我们规定向西为负,向东为正;为区分时间:我们规定现在之前为负,现在以后为正1.教师借助数轴分析说明,若向右(东)行驶2 千米,记作+2 千米,向左(西)行驶2 千米应记作什么?(记作-2 千米) ,2 小时前应记作什么,2 小时后又应记作什么?2.结合课件,让学生找出各题汽车所在的位置,并列式解释①2×80 其中 2 看作 2 小时后,×80 表示每小时向东行驶 80 千米结果怎样呢?(结果从A 处向东行驶了 160 千米2×80=160)②2×(-80)其中 2 看作 2 小时后,×(-80)表示每小时向西行驶80 千米结果怎样呢?(结果从 A 处向西行驶了 160 千米2×(-80)=-160)③(-2)×80 其中(-2)看作 2 小时前, ×80 表示每小时向东行驶 80 千米。

      结果表示什么? (结果表示 2 小时前汽车在 A 处的西面,与 A 处相距 160 千米2)×80=-160) ④(-2)×(-80)其中(-2)看作 2 小时前,×(-80)表示每小时向西行驶 80 千米结果表示什么?(结果表示 2 小时前汽车在 A 处的东面,与 A 处相距 160 千米2)×(-80)=160) 3.观察与分析:观察上面这组题①2×80=160②2×(-80)=-160③(-2)×80=-160④(-2)×(-80)=160 中两个因数及积的符号,同学们觉得两个有理数相乘有没有规律呢?学生小组讨论[ [说明说明]1]1.本题中重点应在数轴上(结合课件)正确找出汽车的位置,在此基础上再列式解.本题中重点应在数轴上(结合课件)正确找出汽车的位置,在此基础上再列式解释让学生对所列式子的理解是建立在实际问题的模型上的,加深对有理数乘法意义的理释让学生对所列式子的理解是建立在实际问题的模型上的,加深对有理数乘法意义的理解2 2.此时应尽可能地让学生互相补充,相互修正,让学生自己来完成.此时应尽可能地让学生互相补充,相互修正,让学生自己来完成4.归纳两数相乘的符号法则:【思考 3】0×80=? (-80)×0=? 0×0=?你能用以上的例子作出解释吗?在进行有理数乘法运算时, 要注意两个方面:一是确定积的符号, 二是积的绝对值是两个因数绝对值的积。

      1.有理数乘法法则:[ [说明说明] ] 引导学生归纳“有理数乘法法则”引导学生归纳“有理数乘法法则” 强调:先定符号后定积强调:先定符号后定积 三、应用新知,尝试成功:例 1 计算: (1)5×(-3)(2) 41(3)(-7)×(-9)2(4)0.5×(-0.6)(5)2354例 2 某地区,夏季高山上的温度从山脚起每升高 100 米,温度降低 0.6℃,已知山脚的温度是 24℃,山高 800 米,求山顶的温度是多少?[ [说明说明] ] 强调法则的运用和书写格式强调法则的运用和书写格式课堂练习:四、巩固练习,体验成功课堂练习:P.20 5.6(1)补充练习:1.两数相乘的积为正,这两个数___(同号、异号)两数相乘的积为负,这两个数___(同号、异号)2.判断下列方程的解是正数还是负数或0:(1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.五、拓展和延伸:在思考2 中,用其它的规定是否也能得到乘法法则?[ [说明说明] ] 供学生课后研究,加深对乘法法则的理解供学生课后研究,加深对乘法法则的理解整理知识,形成结构1、通过这节课,你学到了哪些知识? 2、 (设置悬念)有理数的乘法,关键是确定积的符号,三个或三个以上的有理数相乘如何确定积的符号呢?六、作业:练习册第 9 页习题 5.6 第 1、2、3 题5.6(2)5.6(2)有理数的乘法有理数的乘法教学目标教学目标1. 掌握多个有理数相乘的积的符号法则;2. 掌握有理数乘法的运算律,并利用运算律简化乘法运算;3. 初步形成观察、归纳、概括及运算能力.教学重点与难点教学重点与难点1. 重点:乘法的符号法则和乘法的运算律.3.难点:积的符号的确定及乘法运算律的灵活运用.教学用具准备:教学用具准备:多媒体设备.教学过程设计教学过程设计一、一、创设问题情境1.复习有理数的加法法则、减法法则、乘法法则.2.热身练习:(A 组)(1)(-2)×3;(2)(-2)×(-3);(3)4×(-1.5);(4)(-5)×(-2.4);(5)29×(-21); (6)(-2.5)×16; (7) 97×0×(-6);(B 组)(1) (-2)×3×4×5; (2) (-2)×(-3)×4×5;(3) (-2)×(-3)×(-4)×5; (4) (-2)×(-3)×(-4)×(-5);(5) (-2)×(-3)×(-4)×(-5)×0.观察与归纳:上面 B 组练习 5 个式子中, (1) , (3)有奇数个负因数,积为负; (2) ,(4)有偶数个负因数,积为正; (5)有一个因数是0,积为 0;根据观察,填表: (n 为自然数)负因数个数01234…2n2n+1… 积的符号+-+-++-是不是规律?再做几题试试:(1)3×(-5); (2)3×(-5)×(-2); (3)3×(-5)×(-2)×(-4);(4)3×(-5)×(-2)×(-4)×(-3);(5)3×(-5)×(-2)×(-4)×(-3)×(-6).同样的结论:当负因数个数是奇数时,积为负;当负因数个数是偶数时,积为正.再看两题:(1)(-2)×(-3)×0×(-4); (2)2×0×(-3)×(-4).结果都是 0.由此可得出多个有理数相乘的符号法则:几个不等于零的因数相乘,积的符号由负因数的个数决定, 当负因数有奇数个时, 积为负; 当负因数有偶数个时, 积为正, 几个数相乘,有一个因数为 0,积就为 0.[ [说明说明] ] 通过列表的方式,让学生自主归纳多个有理数相乘的符号法则通过列表的方式,让学生自主归纳多个有理数相乘的符号法则. .继而教师强调指出,继而教师强调指出,这样以后进行有理数乘法运算时必须先根据负因数个数确定积的符号后,再把绝对值相乘,这样以后进行有理数乘法运算时必须先根据负因数个数确定积的符号后,再把绝对值相乘,即先定符号后定值.即先定符号后定值.注意:第一个因数是负数时,可省略括号.注意:第一个因数是负数时,可省略括号.二、二、应用新知,尝试成功1.乘法运算律:乘法的交换律、结合律和分配律在有理数范围内仍然适用吗?试计算:(1) 5×(-3);(2) (-3)×5;(3)[2×(-3)]×(-4); (4) 2×[(-3)×(-4)] ;(5) 4×[2+(-3)] ; (6) 4×2+4×(-3).[ [说明说明] ] 指出,由上面计算结果,可以说明有理数乘法也同样有交换律,结合律和分配律,指出,由上面计算结果,可以说明有理数乘法也同样有交换律,结合律和分配律,并让学生分别用文字叙述和含字母的代数式表达三种运算律.并让学生分别用文字叙述和含字母的代数式表达三种运算律.2.例题与练习例 2 计算:1  2 324例 3 计算:12.50.198例 4 计算:0.12121314 3146[ [说明说明] ] 注意解题步骤,先确定符号后定值;注意乘法运算律的合理使用,能简便运算的要注意解题步骤,先确定符号后定值;注意乘法运算律的合理使用,能简便运算的要简便运算简便运算. .三、三、巩固练习,体验成功课堂练习:课后练习 5.6(2)补充练习:(-7.33)×42.07 + 2.07×7.33;89292399 43040四、整理知识,形成结构:有理数的乘法法则是什么?你觉得在运算中还应注意点什么?五、作业:练习册完成习题 5.65.75.7 有理数的除法有理数的除法教学目标:教学目标:1.了解有理数除法的意义,掌握有理数除法法则,会进行有理数的除法运算.2.理解有理数倒数的意义,了解有理数除法也可分为商的符号确定和绝对值运算两部分组 成.3.知道除法是乘法的逆运算,0 不能作除数,初步形成逆向思维.教学重点与难点教学重点与难点1.重点:有理数的除法法则和倒数概念.2. 难点:除法与乘法的互换.教学用具准备:教学用具准备:多媒体设备.教学过程设计:教学过程设计:一、创设问题情境1.叙述有理数乘法法则.计算: (-3)×4=________;(-3)×______=-12;(-3)×(-4)=______; (-3)×______= 12.由此我们也得到了:(-12)÷(-3)=4 ,12÷(-3)=-4[ [说明说明] ] 通过本题复习有理数的乘法法则的应用,同时复习除法是乘法的逆运算通过本题复习有理数的乘法法则的应用,同时复习除法是乘法的逆运算. .如果在除数或被除数中出现了负数该怎样计算呢?即一般有理数如何进行除法运算?板书课题:5.75.7 有理数的除法有理数的除法二、合作交流,探索发现1.你能选择适当的数填入括号内吗? (-8)÷4=() ;(-12)÷(-3)=() ;0÷(-2)=()2.完成上题,把你的想法在组内交流.3.观察上题中的式子,发现了什么?用你的语言描述出来.4.归纳有理数除法法则.5.比较乘除法法则的异同.[ [说明说明] ] 此活动应给予学生充足的时间和空间,让学生通过独立自主、合作交流完成练习,此活动应给予学生充足的时间和空间,让学生通过独立自主、合作交流完成练习,而且还让他们发现其中的规律,并用数学语言表述,培养学生发现问题、善于探索的能力.而且还让他们发现其中的规律,并用数学语言表述,培养学生发现问题、善于探索的能力.三、三、应用新知,尝试成功1.例 1 计算:(1)35÷(-7) (2)(-36)÷(-72)2.有理数的倒数:1 除以一个数所得的商叫做这个数的倒数.例 2 如何求p3p  0,q  0的倒数呢?的倒数呢? aa  0的倒数呢?q4[ [说明说明] ] 引导学生观察、讨论并说明:若引导学生观察、讨论并说明:若ab 1,则,则 a a、、b b 互为倒数;反之,若互为倒数;反之,若 a a、、b b 互为互为倒数,则倒数,则ab 1. .3.有理数范围内 0 有没有倒数?[ [说明说明] ] 强调强调 0 0 没有倒数没有倒数.4.有理数范围内什么数的倒数等于它本身?5.例 3 计算: (1)332; (2)323计算并比较上述二题的结果,你发现了什么?同桌二人相互各出一组题来验证你们的发现.[ [说明说明] ] 本题让学生尝试从一些题目的结果中去发现规律,并注意对发现的规律加以验证,本题让学生尝试从一些题目的结果中去发现规律,并注意对发现的规律加以验证,培养学生一种科学的探索精神培养学生一种科学的探索精神. .四、四、巩固练习,体验成功课堂练习:课后练习 5.7 补充练习:计算:1123113(3)(7 2 )3274(1)(2 )(5)(3 )(2)2283(2 )(1 )0.7555214五、整理知识,形成结构(1)有理数的除法法则是什么?(2)怎样求负数的倒数?(3)除以一个数等于__________;(4)反思:今天有什么收获,还有什么问题?作业:练习册习题 5.75 5..8 8 有理数乘方有理数乘方教学目标教学目标1、能理解有理数的意义,会正确判断底数,理解幂的含义,掌握有理数乘方运算的符号法则和有理数乘方的运算.2、创设情境,感受到数学的奇妙性,形成一定的数感、符号感,发展抽象思维3、在问题解决的过程中,能认识到数学知识与实际生活的密切相关,增强实际问题与数学问题之间相互转化的意识和能力.4、通过参与数学学习活动,产生好奇心和求知欲,形成主动的学习态度. 积极参与、合作探究,学会倾听和感悟,进一步建立自信心.教学重点及难点教学重点及难点有理数乘方的意义,正确判断幂的底数,掌握乘方运算的符号法则教学流程设计教学流程设计课题引入学习新课巩固应用小结作业教学过程设计教学过程设计一、课题引入一、课题引入1 1.情境导入.情境导入(1)以小组合作的方式,把厚0.1 毫米的纸依次折叠 1 次、2 次、3 次、4 次、5 次,列式并计算纸张的厚度,引导学生观察、发现纸张厚度所发生的变化是在成倍的增长.折叠一次:0.12  0.2毫米折叠两次:0.122  0.4毫米折叠三次:0.1222  0.8毫米折叠四次:0.12222 1.6毫米折叠五次:0.122222  3.2毫米(2)进一步提出问题,引起学生的兴趣,激发学生的求知欲在投影上显示高高的楼房和珠穆朗玛峰的图片,使学生在视觉上感受它们的高度.然后 提问:如果一层楼有 3 米高,把足够长的 0.1 毫米的纸连续折叠 20 次会有多少层高?折叠几次就会超过珠穆朗玛峰?鼓励学生大胆猜想最后老师告诉学生:连续折叠 20 次大概有 35 层楼高,连续折叠 27 次就超过珠穆朗玛峰的高度了,而折叠 30 次就有 12 个珠穆朗玛峰了.这一惊人的答案令学生非常惊叹和兴奋,并集中精神,进入思维活跃的最佳状态,激起了学生极大的兴趣2 2.引出课题:.引出课题:如何用算式表示折叠 20 次、27 次甚至于折叠更多次后的高度呢?20 个 2,27 个 2,或者更多的 2 相乘,怎么表示?有没有简化的表示方法?二、学习新课二、学习新课1 1.概念教学.概念教学2(1)提问:我们已经学过平方,2 代表什么意思?(2)乘方及相关概念n个相同因数a相乘,记作an求n个相同因数a的积的运算,叫做乘方.乘方是一种运算,乘方的结果叫做幂.在aaaa  a中,相同因数a叫做底数,相同因数的个数n叫做指数. 读作 n个ana的n次方.(a是任意有理数,n是正整数)特别的,1 1,(3)例题分析指出下列各组乘方中的底数、指数1)2, 2,(2)333n0n 0(n是正整数)2424242),( ), ()3333)(1 )2 2.乘方运算的符号法则.乘方运算的符号法则(1)观察并判断下列各数的符号,你能得出什么结论?2 , 2 , 2 , 2 ......2345233(2)2,( 2)3,( 2)4,( 2)5......(2)乘方运算的符号法则正数的任何次幂都是正数;负数的奇数次幂是负数,负数的偶次幂是正数(3)例题分析计算: (1)1(2)(1)(3)(1)3 3.计算器中乘方的使用.计算器中乘方的使用2n2n2n1 三、巩固应用三、巩固应用1.填表运算结果2.填表乘方底数指数3.填表加差乘商乘方 45(4)55325( )33anaan-421123 0.1407-1101-1nan四、小结学生自主小结,教师加以补充。

      注重学生的学习体验和主体意识的培养:1、知识点归纳2、学生学习的感受和体会以及存在问题质疑五、作业:书:练习 5.8练习册:5.85.95.9 ((1 1)有理数的混合运算)有理数的混合运算教学目标:教学目标:1、能了解有理数混合运算的意义,掌握有理数混合运算的顺序.2、会进行有理数的混合运算.3、会合理应用运算律,进行简便运算.4、通过有理数的混合运算,培养一定的数感.教学重点及难点教学重点及难点: :重点是有理数的混合运算难点是有理数混合运算顺序的确定并根据运算顺序正确的进行混合运算, 以及运算中的符号问题教学流程设计教学流程设计课题引入学习新课巩固练习小结作业教学过程设计教学过程设计一、课题引入一、课题引入1 1.导入.导入经过前一阶段的学习,我们已经学习了有理数的加、减、乘、除、乘方五种运算,今天我们将学习有理数的混合运算. 。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.