好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

人教版第6章平面直角坐标系教案.docx

14页
  • 卖家[上传人]:鲁**
  • 文档编号:459070404
  • 上传时间:2022-10-16
  • 文档格式:DOCX
  • 文档大小:283.71KB
  • / 14 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第六章平面直角坐标系(一)教学内容:6.1 .1有序数对教学目标:1、理解有序数对的应用意义,了解平面上确定点的常用方法2、培养学生用数学的意识,激发学生的学习兴趣教学重点:有序数对及平面内确定点的方法.教学难点:利用有序数对表示平面内的点.教学设计一.创设问题情境,引入新课1 . 一位居民打给供电部门:“卫星路第8根电线杆的路灯坏了, ”维修人员很快修好了路灯2 .地质部门在某地埋下一个标志桩,上面写着“北纬 442° ,东经1257° ” .3 .某人买了一张8排6号的电影票,很快找到了自己的座位者、 HET横抖-:「; / n;「n—39 iLL— 7 6 5 4 3 2 1分析以上情景,他们分别利用那些数据找到位置的 你能举出生活中利用数据表示位置的例子吗? 二、师生共同参于教学活动 1、由学生回答以下问题:(1)引入:影院对观众席所有的座位都按“几排几号”编号 ,以便确定 每个座位在影院中的位置,观众根据入场券上的“排数 ”和"号数” 准确入座.(2)根据下面这个教室的平面图你能确定某同学的坐位吗?对于下面这个根据教师平面图写的通知,你明白它的意思吗?“今天以下座位的同学放学后参加数学问题讨论:(1, 5), (2, 4) , (4, 2), (3,3 ) ,(5,6 )。

      "学生通过合作交流后得到共识:规定了两个数所表示的含义后就可以表示座位的位置思考:(1)怎样确定教室里坐位的位置?(2)排数和列数先后顺序对位置有影响吗?(2, 4)和(4, 2)在同一位置.(3)假设我们约定“列数在前,排数在后”,你在图书6 1-1上标出被邀请参加讨论的同学的座位让学生讨论、交流后得到以下共识:(1 )可用排数和列数两个不同的数来确定位置2)排数和列数先后顺序对位置有影响2,4)和(4, 2)表示不同的位置,若约定“列数在前排数在后”则(2,4)表示第2列第4排,而(4, 2)则表示第4列第2排因而这一对数是有 顺序的3)让学生到黑板贴出的表格上指出讨论同学的位置^2、有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这 种有顺序的两个数 a与b组成的数对,叫做有序数对(ordered pair ),记作(a, b)利用有序数对,可以很准确地表示出一个位置^3、方法归类常见的确定平面上的点位置常用的方法(1)以某一点为原点(0, 0)将平面分成若干个小正方形的方格,利用点所在的行和列的位 置来确定点的位置.(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。

      以后学习)巩固练习:1.在教室里,根据座位图,确定数学课代表的位置2.教材40练习3、如图,马所处的位置为(2,3).(1)你能表示出象的位置吗?(2)写出马的下一步可以到达的位置三、课堂小结:1、什么要用有序数对表示点的位置,没有顺序可以吗?2、常用的表示点位置的方法 .[作业]必做题:教科书44页:1题仿照前面方法确定位置关系可以变化出其他的象棋盘上的位置,也可以引申到围棋盘或其他棋类第六章 平面直角坐标系 (二)教学内容:61.2 平面直角坐标系(1)教学目标:1在复习数轴有关知识的基础上 ,使学生理解平面直角坐标系的有关概念,并会正确地画出直角坐标系2 .使学生能在建立在平面直角坐标系中,由点的位置写出它的坐标.3 让学生在活动中形成形数结合的意识后全作交流的意识教学重点、理解平面直角坐标系的有关概念 ,能由点位置写出坐标,由坐标描出点的位置.教学难点:解决实际问题,及概念理解;让学生形成形数结合的意识教学过程一、复习旧知识,引入新课问题:(1)什么是数轴,画出数轴2)指出课本图6.1-2中A、B点所表示的数是什么?并在数轴上描出“-3 ”表示的点在数轴上的位置BA—*——***:***:——*——-4 -3 -2-1 01 234由学生回答问题后教师引导学生得出:数轴上的点可以用一个数表示,这个数叫做这个点的坐标.例如点A的坐标为-4,点B的坐标为2,反之,知道数轴上点的坐标,这个点就确定了。

      二、师生共同参于教学活动1、思考:(多媒体展示书 P41图6.1-3 )类似于利用数轴确定直线上点的位置,能不能找到一种办法来确定平面点的位置呢?我们可以在平面内画出两条互相垂直,原点重合的数轴来表示展示P41图)2、有关概念:用平面内两条互相垂直、原点重合的数轴组成平面直角坐标系注意:在一般情况下,两条坐标轴所取的单位长度是一致的水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向, 两坐标的交点为平面直角坐标系的原点.有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了例如: 图6.1 —4中,由点A分别向x轴y轴作垂线,垂足M在x同上的坐标是3,垂足N 到y轴上的坐标是4,我们说A点的横坐标是3,纵坐标是4,有序数对(3, 4)就叫 做点A的坐标,记作A(3,4),类似地,请你根据书P41图61—4,写出点B、C、D的 坐标.由学生回答 B、C、D的坐标:B (—3,4)、C(2, 3)、D (-3,0).注意:由点A分别向x轴作垂线,垂足M.线段AM的长度叫A到x轴的距离由点A分别向y轴作垂线,垂足 N.线段AN的长度叫A到y轴的距离如:点A(-3,4 )至ij x轴的距离是4;至ij y轴的距离是3提问:对于任意一点P (x, y), |x |、|y |表示的含义分别是什么?|x |表示点P至Uy轴的距离,I y |表示点P到x轴的距离3、思考:原点。

      的坐标是什么? x轴和y轴上的点的坐标有什么特点 ^由学生讨论、交流后得到共识:原点O的横,纵坐标都是 0,x轴上的点的纵坐标为 0, y轴上的点的横坐标为 0.4、投影书P42图6.1-5 什么是象限?建立了平面直角坐系以后,坐标平面就被两条坐标轴分成I、n、出、W四个部分,分别叫第一象限、第二象限、第三象限、第四象限坐标上的点不属于任何象限^各象限上的点有何特点 ?学生交流后得到共识,各象限坐标的符号:第一象限上的点,横坐标为正数,纵坐标为正数;即(+,+),第二象限上的点,横坐标为负数,纵坐标为正数;即(一,十),第三象限上的点,横坐标为负数,纵坐标为负数;即(一,一),第四象限上的点,横坐标为正数,纵坐标为负数.即(+ ,—)让学生完成P44习题6.1 第2题5、例题讲解例:在平面直角坐标系中描出下列各点^A(3, 4) ;B (—1,2); C(—3, -2); D (2,-2 )6、巩固练习P43, 练习1, P44.习题6.1 第5题三:课堂小结:首先通过教师提问,总结出本节课都学习了哪些内容:1、平面直角坐标系的作用2 、平面直角坐标系的有关概念;3、已知一个点,如何确定这个点的坐标;在此基础上让学生总结出 x 轴, y 轴上点的坐标的规律,让学生思考各象限点的坐标的特征.作业1. 教科书 P44 第 3 , 4, 5 题2. 补充作业:一、填空题。

      1 .如果点P (a+5,a-2)在x轴上,那么P点坐标为 点A(—2,-1)与x轴的距离是 ;与y轴的距离是 .3 .点M (a,b)在第二象限,则点 N(—b,b —a)在 象限4 .点 A(3,a)在 x 轴上,点 B(b , 4)在 y 轴上,则 a=,b=,S △ AOB=二、选择题:1 已知地平面直角坐标系中 A(— 3,0 )在( )A.x 轴正半轴上B.x 轴负半轴上; C y 轴正半轴上D.y 轴负半轴上2 . 点M (a,b)的坐标ab=0,那么 M(a,b)位置在()A y 轴上 B.x 轴上 ; C.x 轴或 y 轴上 D 原点答案 :一、 1.(7 , 0) 2 2,1 3 第二象限4 0,0 , 6二、 1 B 2.C第六章 平面直角坐标系 (三)教学内容: 6.1 2 平面直角坐标系 (2)教学目标: 1能建立适当的直角坐标系,描述物体的位置;2 . 在给定的直角坐标系中,会根据坐标描出点的位置.3 经历画坐标系、描点、连线, 等过程 , 发展学生的数形结合的意识, 合作交流的意识.教学重点: 建立适当直角坐标系, 描述物体的位置 ; 在给定的直角坐标系中; 根据坐标描出点的位置.教学难点: 建立适当直角坐标系.教学过程一、复习旧知,导入新课问题: 1。

      为什么叫做直角坐标系,画出直角坐标系.2、口答:分别说出下列各个点在哪个象限内或在哪条坐标轴上?A ( 6,-2) , B ( 0, 3) ,C(3,7) ,D(- 6,- 3) E (-2, 0) , F( - 9,5 )]3 写出图中点A、 B、 C、 D, E 的位置 .1-5 -4-3-2 —1 10 * 2~3~4^6-1 *A*^^-3 D-4,一-5,-5-4-3 -2-1 0 *1 % t Z b *6-1 ♦-2,-5,二、师生共同活动1、例:在平面直角坐标系中描出下列各点:A(4, 5), B (-2, 3), C( —4,-1 ) ,D (2.5,-2 ) ,E(0,4)分析:先在x轴上找出表示4的点,再在y轴上找出表示5的点,过 这两个点分别作x轴和y轴的垂线,垂线的交点就是AoA(O)师生共同活动作出点 A B、C、D E由学生独立完成巩固练习P43,练习第2题,P44.习题6.1 第7题.2、探究:如图,正方形 ABCD勺边长为6.(1)如果以点A为原点,AB所在的直线为x轴,建立平面坐标系,那么y轴是哪条线?(2)写出正方形的顶点 A B、C、D的坐标.(3)请另建立一个平面直角坐标系,此时正方形的顶点A B、C D的坐标又分别是多少?与同学交流一下.先让学生独立尝试,然后小组内交流,最后教师进行归纳:①为了方便,我们一般以正方形的两条边所在的直线为坐标轴,建立平面直角坐标系(有四种情形).另外,按图3的方式建立平 面直角坐标系也是常用的.②建立不同的平面直角坐标系,同一个点就会有不同的坐标,但正方形的形状和性质不会改变。

      设计意图:活动尽可能地让学生采用多种方法建立平面直角坐标系,以体验不同的方法所带来的差异建立的平面直角坐标系不同,则各点的坐标也不同3、分别写出图3中的点A、点B、点C的坐标,观察图形, 回答下 列问题:(1)点A与点B关于哪一条直线对称?它们的坐标之间有什么联系? (2)点A与点D关于哪一条直线对称?它们的坐标之间有什么联系?(3)点A与点C呢? 由此你能发现什么规律?设计意图:主要是让学生探索关于坐标轴对称和关于原点对称的点的坐标之间的关系,渗透结合的思想巩固练习 教科书P44.习题61第6题.三、总结归纳让学生围绕教师的问题进行回答:1、本节课学习了哪些知识和方法?2 、你认为应该注意哪些方面的问题?3 、你有什么收获?作业1.教科书习题6.1 P46 第8, 9, 10题.2补充作业:一、填空题1若点P (x, y)满足xy=0,则点P在.2.在平面直角坐标系中,顺次连结A(-3,4。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.