好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

世界数学名人简介课件.ppt

40页
  • 卖家[上传人]:m****
  • 文档编号:592453351
  • 上传时间:2024-09-20
  • 文档格式:PPT
  • 文档大小:371KB
  • / 40 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • ☺中国中国数学名人数学名人☺外国外国数学名人数学名人☺数学轶事数学轶事世界数学名人简介 外国数学名人外国数学名人¡毕达哥拉斯毕达哥拉斯¡欧几里得欧几里得¡笛卡儿笛卡儿¡牛顿牛顿¡莱布尼兹莱布尼兹¡哥德巴赫哥德巴赫¡欧拉欧拉¡高斯高斯¡罗巴切夫斯基罗巴切夫斯基¡阿贝尔阿贝尔¡康托尔康托尔¡希尔伯特希尔伯特世界数学名人简介 中国数学名人中国数学名人¡刘徽刘徽¡祖冲之祖冲之¡秦九韶秦九韶¡杨辉杨辉¡华罗庚华罗庚¡陈景润陈景润数学轶事数学轶事¡数学神童维纳的年龄数学神童维纳的年龄¡数学史上的一则数学史上的一则“冤案冤案”¡爱因斯坦谜语爱因斯坦谜语¡阿基米德群牛问题阿基米德群牛问题¡合理分配赌注问题合理分配赌注问题¡四色猜想四色猜想世界数学名人简介         毕达哥拉斯学派有一种习惯,就是将一切发明都归于学派的领袖,而且秘而不毕达哥拉斯学派有一种习惯,就是将一切发明都归于学派的领袖,而且秘而不宣,以致后人不知是何人在何时所发明的他们很重视数学,企图用数来解释一切宣,以致后人不知是何人在何时所发明的他们很重视数学,企图用数来解释一切宣称数是宇宙万物的本源,研究数学的目的并不在于实用而是为了探索自然的奥秘。

      宣称数是宇宙万物的本源,研究数学的目的并不在于实用而是为了探索自然的奥秘毕达哥拉斯本人以发现勾股定理毕达哥拉斯本人以发现勾股定理(西方称毕达哥拉斯定理西方称毕达哥拉斯定理)著称于世这定理早已为著称于世这定理早已为巴比伦人和中国人所知,不过最早的证明大概可归功于毕达哥拉斯学派这个学派巴比伦人和中国人所知,不过最早的证明大概可归功于毕达哥拉斯学派这个学派还有一个特点,就是将算术和几何紧密联系起来,如把算术中的单位看作还有一个特点,就是将算术和几何紧密联系起来,如把算术中的单位看作“没有位没有位置的点置的点”,而把几何的点看作,而把几何的点看作“有位置的单位有位置的单位”      毕达哥拉斯(毕达哥拉斯(Pythagoras约公元前约公元前580~约前~约前500)古)古希腊哲学家、数学家、天文学家生于萨摩斯(今希腊东部希腊哲学家、数学家、天文学家生于萨摩斯(今希腊东部小岛),卒于他林敦(今意大利南部塔兰托)早年曾游历小岛),卒于他林敦(今意大利南部塔兰托)早年曾游历埃及、巴比伦等地为了摆脱暴政,他移居意大利半岛南部埃及、巴比伦等地为了摆脱暴政,他移居意大利半岛南部的克罗托内,在那里组织了一个政治、宗教、数学合一的秘的克罗托内,在那里组织了一个政治、宗教、数学合一的秘密团体。

      这个团体后来在政治斗争中遭到破坏,他逃到塔兰密团体这个团体后来在政治斗争中遭到破坏,他逃到塔兰托,后终于被杀害托,后终于被杀害世界数学名人简介         欧几里得将公元前七世纪以来希腊几何积累起来的丰富成果整欧几里得将公元前七世纪以来希腊几何积累起来的丰富成果整理收集起来,并且加以系统化,他从少数已被经验证明的公理出发,理收集起来,并且加以系统化,他从少数已被经验证明的公理出发,运用逻辑推理和数学运算的方法演绎出许多定理,写成了十三卷的运用逻辑推理和数学运算的方法演绎出许多定理,写成了十三卷的《几何原本》,使几何学成为一门独立的、演绎的科学《几何原本》,使几何学成为一门独立的、演绎的科学《几何原本》是古希腊科学的骄傲,它的基本原理和定理直到现在《几何原本》是古希腊科学的骄傲,它的基本原理和定理直到现在仍是科学教科书的一部分仍是科学教科书的一部分        欧几里得欧几里得(公元前公元前330年~前年~前275年年)是古希是古希腊数学家,以其所著的《几何原本》闻名于世腊数学家,以其所著的《几何原本》闻名于世关于他的生平,现在知道得很少早年大概就学关于他的生平,现在知道得很少早年大概就学于雅典,深知柏拉图的学说。

      公元前于雅典,深知柏拉图的学说公元前300年左右年左右,在托勒密王的邀请下,来到亚历山大,并长期在在托勒密王的邀请下,来到亚历山大,并长期在那里工作那里工作世界数学名人简介         他主张彻底抛弃经院哲学的偏见,把数学上从明白无误的公理出发进他主张彻底抛弃经院哲学的偏见,把数学上从明白无误的公理出发进行推导的方法应用于哲学研究;提倡行推导的方法应用于哲学研究;提倡“普遍怀疑普遍怀疑”,从其名言,从其名言“我思故我我思故我在在”推定了精神主体的存在;同时也肯定物质世界的客观存在认为在第推定了精神主体的存在;同时也肯定物质世界的客观存在认为在第一次外力推动之后,物质就不断运动(机械运动),正是运动造成了物质一次外力推动之后,物质就不断运动(机械运动),正是运动造成了物质的多样性他的哲学是充满矛盾的二元论和唯心主义的唯理论,其方法论的多样性他的哲学是充满矛盾的二元论和唯心主义的唯理论,其方法论强调理性和逻辑推理而轻视经验主要著作有:《方法谈》、《形而上学强调理性和逻辑推理而轻视经验主要著作有:《方法谈》、《形而上学的沉思》、《哲学原理》的沉思》、《哲学原理》          笛卡儿笛卡儿 ((Renescartes,,1596—1650)) 法国法国哲学家、自然科学家。

      出身贵族家庭少就读于拉哲学家、自然科学家出身贵族家庭少就读于拉弗累舍耶稣会学校和普瓦提埃大学曾长期从军弗累舍耶稣会学校和普瓦提埃大学曾长期从军1629—1649年隐居荷兰潜心著述年隐居荷兰潜心著述1649年应瑞典女年应瑞典女王之聘赴斯德哥尔摩,次年卒于该国著有关于生王之聘赴斯德哥尔摩,次年卒于该国著有关于生理学、心理学、光学、流星学、代数学和解析几何理学、心理学、光学、流星学、代数学和解析几何学的论文和专著,发明笛卡儿坐标和笛卡儿曲线,学的论文和专著,发明笛卡儿坐标和笛卡儿曲线,被认为是解析几何学的奠基人被认为是解析几何学的奠基人世界数学名人简介         牛顿牛顿1661年入英国剑桥大学三一学院,年入英国剑桥大学三一学院,1665年获文学士年获文学士学位随后两年在家乡躲避瘟疫这两年里,他制定了一生大学位随后两年在家乡躲避瘟疫这两年里,他制定了一生大多数重要科学创造的蓝图多数重要科学创造的蓝图1667年回剑桥后当选为三一学院院年回剑桥后当选为三一学院院委,次年获硕士学位委,次年获硕士学位1669年任卢卡斯教授直到年任卢卡斯教授直到1701年1696年任皇家造币厂监督,并移居伦敦年任皇家造币厂监督,并移居伦敦。

      1703年任英国皇家年任英国皇家学会会长学会会长1706年受女王安娜封爵他晚年潜心于自然哲学与年受女王安娜封爵他晚年潜心于自然哲学与神学        牛顿在科学上最卓越的贡献是微积分和经典力学的创建牛顿在科学上最卓越的贡献是微积分和经典力学的创建        牛顿,是英国伟大的数学家、物理学家、牛顿,是英国伟大的数学家、物理学家、天文学家和自然哲学家天文学家和自然哲学家1642年年12月月25日生日生于英格兰林肯郡格兰瑟姆附近的沃尔索普村于英格兰林肯郡格兰瑟姆附近的沃尔索普村,1727年年3月月20日在伦敦病逝日在伦敦病逝世界数学名人简介         莱布尼兹(莱布尼兹(GottfriendWilhelmLeibniz,1646-1716)是)是17、、18世纪之交德国最重要的数学家、物理世纪之交德国最重要的数学家、物理学家和哲学家,一个举世罕见的科学天才他博览群学家和哲学家,一个举世罕见的科学天才他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献莱布尼兹可磨灭的贡献莱布尼兹15岁进莱比锡大学法律系学岁进莱比锡大学法律系学习,习,20岁发表论文表述现代计算机理论,同年获得法岁发表论文表述现代计算机理论,同年获得法学博士学位。

      学博士学位        莱布尼兹于莱布尼兹于1673~~1676年间发明了微积分,年间发明了微积分,1684年公布了论文;牛年公布了论文;牛顿于顿于1665~~1666年间发明了微积分,年间发明了微积分,1687年公布在巨著《自然哲学的数年公布在巨著《自然哲学的数学原理》中微积分到底是谁发明的,这在世界科学史上曾是一桩公案学原理》中微积分到底是谁发明的,这在世界科学史上曾是一桩公案        莱布尼兹在数学中引进了行列式,并把函数、常数、变量、坐标等基莱布尼兹在数学中引进了行列式,并把函数、常数、变量、坐标等基本概念奉献给数学莱布尼兹还是中国古老文明的推崇者,他独立地发现本概念奉献给数学莱布尼兹还是中国古老文明的推崇者,他独立地发现二进制计数法则,成为计算机基础理论的先驱二进制计数法则,成为计算机基础理论的先驱世界数学名人简介         欧拉欧拉(Euler),瑞士数学家及自然科学,瑞士数学家及自然科学家1707年年4月月15日出生於瑞士的巴塞尔,日出生於瑞士的巴塞尔,1783年年9月月18日於俄国彼得堡去逝欧拉出日於俄国彼得堡去逝欧拉出生於牧师家庭,自幼受父亲的教育生於牧师家庭,自幼受父亲的教育。

      13岁岁时入读巴塞尔大学,时入读巴塞尔大学,15岁大学毕业,岁大学毕业,16岁岁获硕士学位获硕士学位 欧拉是欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把数学推至几乎整个物理的领域他是数学史上最多产的数学家,更把数学推至几乎整个物理的领域他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学中的经典著作原理》等都成为数学中的经典著作 欧拉对数学的研究如此广泛,因此在许多数学的分支中也可经常见到欧拉对数学的研究如此广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理以他的名字命名的重要常数、公式和定理世界数学名人简介 哥德巴赫哥德巴赫    哥德巴赫(哥德巴赫(Goldbach C.,,1690.3.18~1764.11.20)是德国数学家;出生于格)是德国数学家;出生于格奥尼格斯别尔格(现名加里宁城);曾在英国牛津奥尼格斯别尔格(现名加里宁城);曾在英国牛津大学学习;原学法学,由于在欧洲各国访问期间结大学学习;原学法学,由于在欧洲各国访问期间结识了贝努利家族识了贝努利家族,所以对数学研究产生了兴趣;曾所以对数学研究产生了兴趣;曾担任中学教师。

      担任中学教师1725年到俄国,同年被选为彼得堡年到俄国,同年被选为彼得堡科学院院士;科学院院士;1725年年~1740年担任彼得堡科学院会年担任彼得堡科学院会议秘书;议秘书;1742年移居莫斯科,并在俄国外交部任职年移居莫斯科,并在俄国外交部任职1729年年~1764年,哥德巴赫与欧拉保持了长达三十年,哥德巴赫与欧拉保持了长达三十五年的书信往来在五年的书信往来在1742年年6月月7日给欧拉的信中,日给欧拉的信中,哥德巴赫提出了一个命题他写道:哥德巴赫提出了一个命题他写道:世界数学名人简介 我的问题是这样的:我的问题是这样的:随便取某一个奇数,比如随便取某一个奇数,比如77,可以把它写成三,可以把它写成三个素数之和:个素数之和:77=53+17+7;;再任取一个奇数,比如再任取一个奇数,比如461,,       461=449+7+5,,   也是三个素数之和,也是三个素数之和,461还可以写成还可以写成257+199+5,仍然是三个素数之和这样,,仍然是三个素数之和这样,我发现:任何大于我发现:任何大于5的奇数都是三个素数之和的奇数都是三个素数之和世界数学名人简介     但这怎样证明呢?虽然做过的每一次试验都得到了上述但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是个别的检验。

      一般的证明,而不是个别的检验"    欧拉回信说,这个命题看来是正确的,但是他也给不出欧拉回信说,这个命题看来是正确的,但是他也给不出严格的证明同时欧拉又提出了另一个命题:任何一个严格的证明同时欧拉又提出了另一个命题:任何一个大于大于2的偶数都是两个素数之和但是这个命题他也没的偶数都是两个素数之和但是这个命题他也没能给予证明能给予证明   不难看出,哥德巴赫的命题是欧拉命题的推论事实上,不难看出,哥德巴赫的命题是欧拉命题的推论事实上,任何一个大于任何一个大于5的奇数都可以写成如下形式:的奇数都可以写成如下形式:         2N+1=3+2(N-1),其中,其中2(N-1)≥4.   若欧拉的命题成立,则偶数若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之可以写成两个素数之和,于是奇数和,于是奇数2N+1可以写成三个素数之和,从而,对于可以写成三个素数之和,从而,对于大于大于5的奇数,哥德巴赫的猜想成立的奇数,哥德巴赫的猜想成立世界数学名人简介     但是哥德巴赫的命题成立并不能保证欧拉命题的成立但是哥德巴赫的命题成立并不能保证欧拉命题的成立因而欧拉的命题比哥德巴赫的命题要求更高。

      因而欧拉的命题比哥德巴赫的命题要求更高    现在通常把这两个命题统称为哥德巴赫猜想二百多年来,现在通常把这两个命题统称为哥德巴赫猜想二百多年来,尽管许许多多的数学家为解决这个猜想付出了艰辛的劳尽管许许多多的数学家为解决这个猜想付出了艰辛的劳动,迄今为止它仍然是一个既没有得到正面证明也没有动,迄今为止它仍然是一个既没有得到正面证明也没有被推翻的命题被推翻的命题1900年,德国数学家希尔伯特(年,德国数学家希尔伯特(Hilbert D.,1862.1.23~1943.2.14)在巴黎国际数学家大会上提)在巴黎国际数学家大会上提出了二十三个最重要的问题供二十世纪的数学家来研究出了二十三个最重要的问题供二十世纪的数学家来研究其中第八问题为素数问题;在提到哥德巴赫猜想时,希其中第八问题为素数问题;在提到哥德巴赫猜想时,希尔伯特说这是以往遗留的最重要的问题之一尔伯特说这是以往遗留的最重要的问题之一世界数学名人简介     近一百年来,哥德巴赫猜想吸引着世界上许多著近一百年来,哥德巴赫猜想吸引着世界上许多著名的数学家,并在证明上取得了很大的进展中名的数学家,并在证明上取得了很大的进展中国数学家陈景润于国数学家陈景润于1966年取得了重大的进展,他年取得了重大的进展,他证明了每一个充分大的偶数都可以表示为一个素证明了每一个充分大的偶数都可以表示为一个素数与另一个自然数之和,而这另一个自然数可以数与另一个自然数之和,而这另一个自然数可以表示为至多两个素数的乘积。

      通常简称此结果为表示为至多两个素数的乘积通常简称此结果为大偶数可表为大偶数可表为"1+2"在陈景润之前,关于大偶在陈景润之前,关于大偶数可表示为数可表示为s个素数之积与个素数之积与t个素数之积的和的个素数之积的和的"s+ t"问题的研究进展情况如下:问题的研究进展情况如下:世界数学名人简介 ¡   1920年,挪威的布龙证明了年,挪威的布龙证明了"9+9";;¡   1924年,德国的拉特马赫证明了年,德国的拉特马赫证明了"7+7";;¡   1932年,英国的埃斯特曼证明了年,英国的埃斯特曼证明了"6+6";;¡   1937年,意大利的蕾西先后证明了年,意大利的蕾西先后证明了"5+7"、、"4+9"、、"3+15"和和"2+366";;¡   1938年,苏联的布赫夕太勃证明了年,苏联的布赫夕太勃证明了"5+5",,1940年他又证明了年他又证明了"4+4";;¡   1948年,匈牙利的兰恩尼证明了年,匈牙利的兰恩尼证明了"1+C",其中,其中C很大;很大;¡   1956年,中国的王元(年,中国的王元(1930~ )证明了)证明了"3+4";;1957年,他又先后证明了年,他又先后证明了"3+3"和和"2+3";;¡   1962年,中国的潘承洞(年,中国的潘承洞(1934~ )和苏联的巴尔巴恩证明了)和苏联的巴尔巴恩证明了"1+5";;¡   1962年,中国的王元证明了年,中国的王元证明了"1+4";;1963年,中国的潘承洞和苏联的巴尔巴年,中国的潘承洞和苏联的巴尔巴恩证也证明了恩证也证明了"1+4";;¡   1965年,苏联的布赫夕太勃和小维诺格拉夫及意大利的波波里证明了年,苏联的布赫夕太勃和小维诺格拉夫及意大利的波波里证明了"1+3";;¡   1966后,中国的陈景润证明了后,中国的陈景润证明了"1+2"。

      ¡   最终将由哪个国家的哪位数学家攻克大偶数表为两个素数之和(即最终将由哪个国家的哪位数学家攻克大偶数表为两个素数之和(即"1+1")的)的问题,现在还无法予测问题,现在还无法予测世界数学名人简介 高斯(高斯(C.F.Gauss,1777.4.30-1855.2.23)是德国数)是德国数学家、物理学家和天文学家高斯在童年时代就表学家、物理学家和天文学家高斯在童年时代就表现出非凡的数学天才.年仅三岁,就学会了算术,现出非凡的数学天才.年仅三岁,就学会了算术,八岁因发现等差数列求和公式而深得老师和同学的八岁因发现等差数列求和公式而深得老师和同学的钦佩.大学二年级时得出正十七边形的尺规作图法,钦佩.大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件.解决了并给出了可用尺规作图的正多边形的条件.解决了两千年来悬而未决的难题,两千年来悬而未决的难题,1799年以代数基本定理年以代数基本定理的四个漂亮证明获博士学位.的四个漂亮证明获博士学位.高斯的数学成就遍及各个领域,在数学许多方面的贡献都有着划时代的意义高斯的数学成就遍及各个领域,在数学许多方面的贡献都有着划时代的意义.并在天文学,大地测量学和磁学的研究中都有杰出的贡献..并在天文学,大地测量学和磁学的研究中都有杰出的贡献.1801年发表的年发表的《算术研究》是数学史上为数不多的经典著作之一,它开辟了数论研究的全《算术研究》是数学史上为数不多的经典著作之一,它开辟了数论研究的全新时代.非欧几里得几何是高斯的又一重大发现,他的遗稿表明,他是非欧新时代.非欧几里得几何是高斯的又一重大发现,他的遗稿表明,他是非欧几何的创立者之一.高斯致力于天文学研究前后约几何的创立者之一.高斯致力于天文学研究前后约20年,在这领域内的伟大年,在这领域内的伟大著作之一是著作之一是1809年发表的《天体运动理论》.高斯对物理学也有杰出贡献,年发表的《天体运动理论》.高斯对物理学也有杰出贡献,麦克斯韦称高斯的磁学研究改造了整个科学.高斯的一生中,还培养了不少麦克斯韦称高斯的磁学研究改造了整个科学.高斯的一生中,还培养了不少杰出的数学家杰出的数学家世界数学名人简介 罗巴切夫斯基罗巴切夫斯基(1792~~1856)Lobacevskil, Nikolai Lvanovie俄国人。

      俄国人1792年年12月月1日生日生于诺伏哥罗德于诺伏哥罗德(现在的高尔基城现在的高尔基城)一个官吏家一个官吏家庭1802年至年至1807年在当地上中学,年在当地上中学,1807年年至至1811年在喀山大学读书,年在喀山大学读书,1811年获硕士学年获硕士学位并留校任教位并留校任教1814年起任教授助理,年起任教授助理,1816年起任非常任教授,年起任非常任教授,1822年起任常任教授年起任常任教授1820年至年至1821年起任常任教授年起任常任教授1820年至年至1821年及年及18233年至年至1825年兼任物理数学系系主任年兼任物理数学系系主任1827年至年至1846年任校长年任校长1846年至年至1856年任喀山区的副督学年任喀山区的副督学1856年年2月月24日在喀山逝世日在喀山逝世罗巴切夫斯基在数学上的划时代的贡献是首创了一种罗巴切夫斯基在数学上的划时代的贡献是首创了一种非欧几里得几何学,即罗巴切夫斯基几何学非欧几里得几何学,即罗巴切夫斯基几何学世界数学名人简介 阿贝尔(阿贝尔(Abel, NielsHanrik, 1802-1829)挪威数学家挪威数学家1802年年8月月5日生于芬岛,日生于芬岛,1829年年4月月6日卒于弗鲁兰。

      日卒于弗鲁兰 15岁时优秀的数学教师霍尔姆博发现了阿贝尔的数学天岁时优秀的数学教师霍尔姆博发现了阿贝尔的数学天才,对他给予指导才,对他给予指导1821年阿贝尔进入克里斯蒂安尼亚年阿贝尔进入克里斯蒂安尼亚大学1824年,他解决了用根式求解五次方程的不可能年,他解决了用根式求解五次方程的不可能性问题这一论文也寄给了格丁根的高斯,并未引起重性问题这一论文也寄给了格丁根的高斯,并未引起重视1825年,他去柏林,结识了克莱尔他与施泰纳建议克莱尔创办了著名数学年,他去柏林,结识了克莱尔他与施泰纳建议克莱尔创办了著名数学刊物《纯粹与应用数学杂志》这个杂志头三卷发表了阿贝尔刊物《纯粹与应用数学杂志》这个杂志头三卷发表了阿贝尔 22篇包括方程篇包括方程论、无穷级数、椭圆函数论等方面的论文可惜,阿贝尔在欧洲大陆没有谋论、无穷级数、椭圆函数论等方面的论文可惜,阿贝尔在欧洲大陆没有谋到合适的职位,到合适的职位,1827年他贫困交迫地回到了挪威一年以后,不到年他贫困交迫地回到了挪威一年以后,不到27岁的阿岁的阿贝尔就病逝贝尔就病逝阿贝尔和雅可比是公认的椭圆函数论的创始人阿贝尔发现了椭圆函数的加阿贝尔和雅可比是公认的椭圆函数论的创始人。

      阿贝尔发现了椭圆函数的加法定理、双周期性、并引进了椭圆积分的反演此外,在交换群、二项级数法定理、双周期性、并引进了椭圆积分的反演此外,在交换群、二项级数的严格理论、级数求和等方面都有巨大的贡献这些工作使他成为分析学严的严格理论、级数求和等方面都有巨大的贡献这些工作使他成为分析学严格化的推动者格化的推动者世界数学名人简介 康托尔(康托尔(G.Cantor,1845.3—1918.1)),集合集合论的创始者丹麦犹太商之子,出生于彼得论的创始者丹麦犹太商之子,出生于彼得堡,后移居德国,堡,后移居德国,1867年在柏林获博士学位,年在柏林获博士学位,1897—1905年任哈勒大学教授他的学士年任哈勒大学教授他的学士论文虽然是关于数论方面的,但他致力于三论文虽然是关于数论方面的,但他致力于三角级数唯一性的研究,创立了集合论角级数唯一性的研究,创立了集合论1874年,开始引入基数的概念,由此证明了超越年,开始引入基数的概念,由此证明了超越数大大多于代数数他是维数理论的开拓者,数大大多于代数数他是维数理论的开拓者,因而他为拓扑空间理论开辟了道路因而他为拓扑空间理论开辟了道路世界数学名人简介 希尔伯特,希尔伯特,D.(Hilbert,David,,1862~~1943),德国数学,德国数学家,生于东普鲁士哥尼斯堡家,生于东普鲁士哥尼斯堡(前苏联加里宁格勒前苏联加里宁格勒)附近的附近的韦劳。

      中学时代韦劳中学时代,希尔伯特就是一名勤奋好学的学生,对希尔伯特就是一名勤奋好学的学生,对于科学特别是数学表现出浓厚的兴趣于科学特别是数学表现出浓厚的兴趣,善于灵活和深刻地善于灵活和深刻地掌握以至应用老师讲课的内容掌握以至应用老师讲课的内容1880年年,他不顾父亲让他不顾父亲让他学法律的意愿,进入哥尼斯堡大学攻读数学他学法律的意愿,进入哥尼斯堡大学攻读数学1884年年获得博士学位获得博士学位,后来又在这所大学里取得讲师资格和升任后来又在这所大学里取得讲师资格和升任副教授1893年被任命为正教授,年被任命为正教授,1895年年,转入格廷根转入格廷根大学任教授,此后一直在格廷根生活和工作,于是大学任教授,此后一直在格廷根生活和工作,于是930年退休在此期间在此期间,他成为柏林科学院通讯院士他成为柏林科学院通讯院士,并曾获得施泰讷奖、罗巴切夫斯基奖和波约并曾获得施泰讷奖、罗巴切夫斯基奖和波约伊奖1930年获得瑞典科学院的米塔格年获得瑞典科学院的米塔格-莱福勒奖莱福勒奖,1942年成为柏林科学院荣誉院士年成为柏林科学院荣誉院士希尔伯特是一位正直的科学家希尔伯特是一位正直的科学家,第一次世界大战前夕,他拒绝在德国政府为进行欺第一次世界大战前夕,他拒绝在德国政府为进行欺骗宣传而发表的《告文明世界书》上签字。

      战争期间,他敢干公开发表文章悼念骗宣传而发表的《告文明世界书》上签字战争期间,他敢干公开发表文章悼念“敌人的数学家敌人的数学家”达布希特勒上台后,他抵制并上书反对纳粹政府排斥和迫害犹太达布希特勒上台后,他抵制并上书反对纳粹政府排斥和迫害犹太科学家的政策由于纳粹政府的反动政策日益加剧,许多科学家被迫移居外国,曾科学家的政策由于纳粹政府的反动政策日益加剧,许多科学家被迫移居外国,曾经盛极一时的格廷根学派衰落了,希尔伯特也于经盛极一时的格廷根学派衰落了,希尔伯特也于1943年在孤独中逝世年在孤独中逝世希尔伯特是对二十世纪数学有深刻影响的数学家之一希尔伯特是对二十世纪数学有深刻影响的数学家之一世界数学名人简介     刘徽(生于公元刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.和《海岛算经》,是我国最宝贵的数学遗产. 《九章算术》约成书于东《九章算术》约成书于东汉之初,共有汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.明.         在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了"割圆术割圆术",即将,即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率出了圆周率π=3.14的结果.刘徽在割圆术中提出的的结果.刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作.,这可视为中国古代极限观念的佳作.   《海岛算经》一书中,  《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目.富有代表性,都在当时为西方所瞩目.   刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推  刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人.理的方式来论证数学命题的人.   刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓  刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富.誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富.世界数学名人简介           祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以人们以"径一周三径一周三"做为圆周率,这就是做为圆周率,这就是"古率古率".后来发现古率误.后来发现古率误差太大,圆周率应是差太大,圆周率应是"圆径一而周三有余圆径一而周三有余",不过究竟余多少,意,不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割割圆术圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内,用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接接96边形,边形, 求得求得π=3.14,并指出,内接正多边形的边数越多,所,并指出,内接正多边形的边数越多,所求得的求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出反复演算,求出π在在3.1415926与与3.1415927之间.并得出了之间.并得出了π分分数形式的近似值,取数形式的近似值,取  为约率为约率 ,取,取  为密率,其中为密率,其中  取六位小数是取六位小数是3.141929,它是分子分母在,它是分子分母在1000以内最接近以内最接近π值的分数.值的分数.        祖冲之(公元祖冲之(公元429-500年)年)是我国南北朝时期,河北省涞源是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代苦实践,终于使他成为我国古代杰出的数学家、天文学家.杰出的数学家、天文学家.世界数学名人简介 ¡祖冲之究竟用什么方法得出这一结果,现在无从考查.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的若设想他按刘徽的"割圆术割圆术"方法去求的话,就要计算到方法去求的话,就要计算到圆内接圆内接16,,384边形,这需要化费多少时间和付出多么边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率,才智是令人钦佩的.祖冲之计算得出的密率, 外国数学外国数学家获得同样结果,已是一千多年以后的事了.为了纪念家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把祖冲之的杰出贡献,有些外国数学史家建议把π=叫做叫做"祖率祖率".. ¡      祖冲之博览当时的名家经典,坚持实事求是,他从亲祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.明历》,开辟了历法史的新纪元.世界数学名人简介 ¡祖冲之还与他的儿子祖暅(也是我国著名的数学祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:.他们当时采用的一条原理是:"幂势既同,则幂势既同,则积不容异.积不容异."意即,位于两平行平面之间的两个意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理,等.这一原理,在西文被称为卡瓦列利原理, 但但这是在祖氏以后一千多年才由卡氏发现的.为了这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为称这原理为"祖暅原理祖暅原理"..世界数学名人简介             秦九韶(约秦九韶(约1202--1261),),字道古,四川安岳人。

      先后在湖北,字道古,四川安岳人先后在湖北,安徽,江苏,浙江等地做官,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县)年左右被贬至梅州,(今广东梅县),不久死于任所不久死于任所        他与李冶,杨辉,朱世杰并称宋元数学四大家早年在杭州他与李冶,杨辉,朱世杰并称宋元数学四大家早年在杭州“访习于太史,又尝从隐君子受数学访习于太史,又尝从隐君子受数学”,,1247年写成著名的《数年写成著名的《数书九章》《数书九章》全书凡书九章》《数书九章》全书凡18卷,卷,81题,分为九大类其最题,分为九大类其最重要的数学成就重要的数学成就----“大衍总数术大衍总数术”(一次同余组解法)与(一次同余组解法)与“正正负开方术负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位数学史上占有突出的地位世界数学名人简介        杨辉,中国南宋时期杰出的数学家和数学教育家在杨辉,中国南宋时期杰出的数学家和数学教育家在13世纪中叶活动于苏杭一带,其著作甚多世纪中叶活动于苏杭一带,其著作甚多               他著名的数学书共五种二十一卷。

      著有《详解九章算他著名的数学书共五种二十一卷著有《详解九章算法》十二卷(法》十二卷(1261年)、《日用算法》二卷(年)、《日用算法》二卷(1262年)、年)、《乘除通变本末》三卷(《乘除通变本末》三卷(1274年)、《田亩比类乘除算法年)、《田亩比类乘除算法》二卷(》二卷(1275年)、《续古摘奇算法》二卷(年)、《续古摘奇算法》二卷(1275年)杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决总结和发展,有的还编成了歌决,如九归口决   他在《续古摘奇算法》中  他在《续古摘奇算法》中介绍了各种形式的介绍了各种形式的"纵横图纵横图"及有关的构造方法,同时及有关的构造方法,同时"垛积术垛积术"是杨辉继沈括是杨辉继沈括"隙隙积术积术"后,关于高阶等差级数的研究杨辉在后,关于高阶等差级数的研究杨辉在"纂类纂类"中,将《九章算术》中,将《九章算术》246个题个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。

      积、盈不足、方程、勾股等九类           他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学  他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学者制订的者制订的"习算纲目习算纲目"是中国数学教育史上的重要文献是中国数学教育史上的重要文献世界数学名人简介 工作到最后一天的华罗庚工作到最后一天的华罗庚             1985年年6月月12日,在东京一个国际学术日,在东京一个国际学术会议上,会议上,75岁的华罗庚岁的华罗庚(1910—1985)教授用教授用流利的英语,作了十分精彩的报告当他讲流利的英语,作了十分精彩的报告当他讲完最后一句话,人们还在热烈鼓掌时,他的完最后一句话,人们还在热烈鼓掌时,他的身子歪倒了身子歪倒了  华罗庚出生于江苏省金坛县一个小商人家庭,从小喜欢数学,华罗庚出生于江苏省金坛县一个小商人家庭,从小喜欢数学,而且非常聪明一天老师出了一道数学题:而且非常聪明一天老师出了一道数学题:“今有物不知其数,三今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何三数之剩二,五五数之剩三,七七数之剩二,问物几何?”“23!”老师的话音刚落,华罗庚的答案就脱口而出,老师连连点头称赞他老师的话音刚落,华罗庚的答案就脱口而出,老师连连点头称赞他的运算能力。

      可惜因为家庭经济困难,他不得不退学去当店员,一的运算能力可惜因为家庭经济困难,他不得不退学去当店员,一边工作,一边自学边工作,一边自学18岁时,他又染上伤寒病,与死神搏斗半年,岁时,他又染上伤寒病,与死神搏斗半年,虽然活了下来,但却留下终身残疾虽然活了下来,但却留下终身残疾——右腿瘸了右腿瘸了世界数学名人简介      1930年,年,19岁的华罗庚写了一篇《苏家驹之代数的五次岁的华罗庚写了一篇《苏家驹之代数的五次方程不成立的理由》,发表在上海《科学》杂志上清华大方程不成立的理由》,发表在上海《科学》杂志上清华大学数学系主任熊庆来从文章中看到了作者的数学才华,便问学数学系主任熊庆来从文章中看到了作者的数学才华,便问周围的人,周围的人,“他是哪国留学的他是哪国留学的?在哪个大学任教在哪个大学任教?”当他知道当他知道华罗庚原来是一个华罗庚原来是一个19岁的小店员时,很受感动,主动把华罗岁的小店员时,很受感动,主动把华罗庚请到清华大学华罗庚在清华四年中,在熊庆来教授的指庚请到清华大学华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。

      他对数论有很深的研究,得出了著国留学,获得博士学位他对数论有很深的研究,得出了著名的华氏定理名的华氏定理     抗日战争时期,华罗庚白天在西南联大任教,晚上在昏  抗日战争时期,华罗庚白天在西南联大任教,晚上在昏暗的油灯下研究在这样艰苦的环境中,华罗庚写出了暗的油灯下研究在这样艰苦的环境中,华罗庚写出了20多多篇论文和厚厚的一本书《堆垒素数论》他特别注意理论联篇论文和厚厚的一本书《堆垒素数论》他特别注意理论联系实际,系实际,1958年以后,他走遍了年以后,他走遍了20多个省市自治区,动员群多个省市自治区,动员群众把优选法用于农业生产记者在一次采访时问他:众把优选法用于农业生产记者在一次采访时问他:“你最你最大的愿望是什么大的愿望是什么?”他不加思索地回答:他不加思索地回答:“工作到最后一天工作到最后一天他的确为科学辛劳工作到最后一天,实现了自己的诺言他的确为科学辛劳工作到最后一天,实现了自己的诺言世界数学名人简介              陈景润陈景润((19331933..5 5~~19961996..3 3))是中国是中国现代数学家现代数学家1933年年5月月22日生于福建省日生于福建省福州市。

      福州市1953年毕业于厦门大学数学系年毕业于厦门大学数学系由于他对塔里问题的一个结果作了改进,由于他对塔里问题的一个结果作了改进,受到华罗庚的重视,被调到中国科学院数受到华罗庚的重视,被调到中国科学院数学研究所工作,先任实习研究员、助理研学研究所工作,先任实习研究员、助理研究员,再越级提升为研究员,并当选为中究员,再越级提升为研究员,并当选为中国科学院数学物理学部委员国科学院数学物理学部委员       陈景润是世界著名解析数论学家之一,他在陈景润是世界著名解析数论学家之一,他在50年代即对高斯年代即对高斯圆内格点问题、球内格点问题、塔里问题与华林问题的以往结果,圆内格点问题、球内格点问题、塔里问题与华林问题的以往结果,作出了重要改进作出了重要改进60年代后,他又对筛法及其有关重要问题,进年代后,他又对筛法及其有关重要问题,进行广泛深入的研究行广泛深入的研究世界数学名人简介 ¡    1966年屈居于六平方米小屋的陈景润,借一盏昏暗的煤油灯,年屈居于六平方米小屋的陈景润,借一盏昏暗的煤油灯,伏在床板上,用一支笔,耗去了几麻袋的草稿纸,居然攻克了世伏在床板上,用一支笔,耗去了几麻袋的草稿纸,居然攻克了世界著名数学难题"哥德巴赫猜想"中的(界著名数学难题"哥德巴赫猜想"中的(1+2),创造了距摘取),创造了距摘取这颗数论皇冠上的明珠(这颗数论皇冠上的明珠(1+1)只是一步之遥的辉煌。

      他证明了)只是一步之遥的辉煌他证明了"每个大偶数都是一个素数及一个不超过两个素数的乘积之和","每个大偶数都是一个素数及一个不超过两个素数的乘积之和",使他在哥德巴赫猜想的研究上居世界领先地位这一结果国际上使他在哥德巴赫猜想的研究上居世界领先地位这一结果国际上誉为"陈氏定理",受到广泛征引这项工作还使他与王元、潘誉为"陈氏定理",受到广泛征引这项工作还使他与王元、潘承洞在承洞在1978年共同获得中国自然科学奖一等奖他研究哥德巴赫年共同获得中国自然科学奖一等奖他研究哥德巴赫猜想和其他数论问题的成就,至今,仍然在世界上遥遥领先世猜想和其他数论问题的成就,至今,仍然在世界上遥遥领先世界级的数学大师、美国学者阿界级的数学大师、美国学者阿·威尔(威尔(AWeil)曾这样称赞)曾这样称赞他:"陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走他:"陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走""¡  陈景润于  陈景润于1978年和年和1982年两次收到国际数学家大会请他作年两次收到国际数学家大会请他作45分钟报告的邀请这是中国人的自豪和骄傲他所取得的成绩,分钟报告的邀请这是中国人的自豪和骄傲。

      他所取得的成绩,他所赢得的殊荣,为千千万万的知识分子树起了一面不凋的旗帜,他所赢得的殊荣,为千千万万的知识分子树起了一面不凋的旗帜,辉映三山五岳,召唤着亿万的青少年奋发向前陈景润共发表学辉映三山五岳,召唤着亿万的青少年奋发向前陈景润共发表学术论文术论文70余篇世界数学名人简介 数学神童维纳的年龄数学神童维纳的年龄 n20世纪著名数学家诺伯特世纪著名数学家诺伯特·维纳,从小就智力超常,三岁时就能读写,维纳,从小就智力超常,三岁时就能读写,十四岁时就大学毕业了几年后,他又通过了博士论文答辩,成为美国十四岁时就大学毕业了几年后,他又通过了博士论文答辩,成为美国哈佛大学的科学博士哈佛大学的科学博士        “我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字个数,刚好把十个数字0、、1、、2、、3、、4、、5、、6、、7、、8、、9全都用上了,全都用上了,不重不漏这意味着全体数字都向我俯首称臣,预祝我将来在数学领域不重不漏这意味着全体数字都向我俯首称臣,预祝我将来在数学领域里一定能干出一番惊天动地的大事业里一定能干出一番惊天动地的大事业。

        维纳此言一出,四座皆惊,大家都被他的这道妙题深深地吸引住了  维纳此言一出,四座皆惊,大家都被他的这道妙题深深地吸引住了整个会场上的人,都在议论他的年龄问题整个会场上的人,都在议论他的年龄问题世界数学名人简介      其实这个问题不难解答,但是需要一点数字其实这个问题不难解答,但是需要一点数字“灵感灵感”不难发现,不难发现,21的的立方是四位数,而立方是四位数,而22的立方已经是五位数了,所以维纳的年龄最多是的立方已经是五位数了,所以维纳的年龄最多是21岁;同样道理,岁;同样道理,18的四次方是六位数,而的四次方是六位数,而17的四次方则是五位数了,所的四次方则是五位数了,所以维纳的年龄至少是以维纳的年龄至少是18岁这样,维纳的年龄只可能是岁这样,维纳的年龄只可能是18、、19、、20、、21这四个数中的一个这四个数中的一个  剩下的工作就是  剩下的工作就是“一一筛选一一筛选”了20的立方是的立方是8000,有,有3个重复数个重复数字字0,不合题意同理,,不合题意同理,19的四次方等于的四次方等于130321,,21的四次方等于的四次方等于194481,都不合题意最后只剩下一个,都不合题意。

      最后只剩下一个18,是不是正确答案呢?验算一,是不是正确答案呢?验算一下,下,18的立方等于的立方等于5832,四次方等于,四次方等于104976,恰好,恰好“不重不漏不重不漏”地用地用完了十个阿拉伯数字,多么完美的组合!完了十个阿拉伯数字,多么完美的组合!        18岁的少年博士,后来果然成就了一番大事业:他成为信息论的前岁的少年博士,后来果然成就了一番大事业:他成为信息论的前驱和控制论的奠基人驱和控制论的奠基人 世界数学名人简介 数学史上的一则数学史上的一则“冤案冤案” n人类很早就掌握了一元二次方程的解法,但是对一元三次方程的研究,人类很早就掌握了一元二次方程的解法,但是对一元三次方程的研究,则是进展缓慢古代中国、希腊和印度等地的数学家,都曾努力研究过则是进展缓慢古代中国、希腊和印度等地的数学家,都曾努力研究过一元三次方程,但是他们所发明的几种解法,都仅仅能够解决特殊形式一元三次方程,但是他们所发明的几种解法,都仅仅能够解决特殊形式的三次方程,对一般形式的三次方程就不适用了的三次方程,对一般形式的三次方程就不适用了  在十六世纪的欧洲,随着数学的发展,一元三次方程也有了固定的  在十六世纪的欧洲,随着数学的发展,一元三次方程也有了固定的求解方法。

      在很多数学文献上,把三次方程的求根公式称为求解方法在很多数学文献上,把三次方程的求根公式称为“卡尔丹诺卡尔丹诺公式公式”,这显然是为了纪念世界上第一位发表一元三次方程求根公式的,这显然是为了纪念世界上第一位发表一元三次方程求根公式的意大利数学家卡尔丹诺那么,一元三次方程的通式解,是不是卡尔丹意大利数学家卡尔丹诺那么,一元三次方程的通式解,是不是卡尔丹诺首先发现的呢?历史事实并不是这样诺首先发现的呢?历史事实并不是这样世界数学名人简介 n  数学史上最早发现一元三次方程通式解的人,是十六世数学史上最早发现一元三次方程通式解的人,是十六世纪意大利的另一位数学家尼柯洛纪意大利的另一位数学家尼柯洛·冯塔纳(冯塔纳(Niccolo Fontana) 冯塔纳出身贫寒,少年丧父,家中也没有条件冯塔纳出身贫寒,少年丧父,家中也没有条件供他念书,但是他通过艰苦的努力,终于自学成才,成为十供他念书,但是他通过艰苦的努力,终于自学成才,成为十六世纪意大利最有成就的学者之一由于冯塔纳患有六世纪意大利最有成就的学者之一由于冯塔纳患有“口吃口吃”症,所以当时的人们昵称他为症,所以当时的人们昵称他为“塔尔塔里亚塔尔塔里亚”((Tartaglia),), 也就是意大利语中也就是意大利语中“结巴结巴”的意思。

      后来的意思后来的很多数学书中,都直接用的很多数学书中,都直接用“塔尔塔里亚塔尔塔里亚”来称呼冯塔纳来称呼冯塔纳  经过多年的探索和研究,冯塔纳利用十分巧妙的方法,  经过多年的探索和研究,冯塔纳利用十分巧妙的方法,找到了一元三次方程一般形式的求根方法这个成就,使他找到了一元三次方程一般形式的求根方法这个成就,使他在几次公开的数学较量中大获全胜,从此名扬欧洲但是冯在几次公开的数学较量中大获全胜,从此名扬欧洲但是冯塔纳不愿意将他的这个重要发现公之于世塔纳不愿意将他的这个重要发现公之于世世界数学名人简介 n  当时的另一位意大利数学家兼医生卡尔丹诺,对冯塔纳的发现非常当时的另一位意大利数学家兼医生卡尔丹诺,对冯塔纳的发现非常感兴趣他几次诚恳地登门请教,希望获得冯塔纳的求根公式可是冯感兴趣他几次诚恳地登门请教,希望获得冯塔纳的求根公式可是冯塔纳始终守口如瓶,滴水不漏虽然卡尔丹诺屡次受挫,但他极为执着,塔纳始终守口如瓶,滴水不漏虽然卡尔丹诺屡次受挫,但他极为执着,软磨硬泡地向冯塔纳软磨硬泡地向冯塔纳“挖秘诀挖秘诀”后来,冯塔纳终于用一种隐晦得如同后来,冯塔纳终于用一种隐晦得如同咒语般的语言,把三次方程的解法咒语般的语言,把三次方程的解法“透露透露”给了卡尔丹诺。

      冯塔纳认为给了卡尔丹诺冯塔纳认为卡尔丹诺很难破解他的卡尔丹诺很难破解他的“咒语咒语”,可是卡尔丹诺的悟性太棒了,他通过,可是卡尔丹诺的悟性太棒了,他通过解三次方程的对比实践,很快就彻底破译了冯塔纳的秘密解三次方程的对比实践,很快就彻底破译了冯塔纳的秘密  卡尔丹诺把冯塔纳的三次方程求根公式,写进了自己的学术著作  卡尔丹诺把冯塔纳的三次方程求根公式,写进了自己的学术著作《大法》中,但并未提到冯塔纳的名字随着《大法》在欧洲的出版发《大法》中,但并未提到冯塔纳的名字随着《大法》在欧洲的出版发行,人们才了解到三次方程的一般求解方法由于第一个发表三次方程行,人们才了解到三次方程的一般求解方法由于第一个发表三次方程求根公式的人确实是卡尔丹诺,因此后人就把这种求解方法称为求根公式的人确实是卡尔丹诺,因此后人就把这种求解方法称为“卡尔卡尔丹诺公式丹诺公式”  卡尔丹诺剽窃他人的学术成果,并且据为已有,这一行为在人类数  卡尔丹诺剽窃他人的学术成果,并且据为已有,这一行为在人类数学史上留下了不甚光彩的一页这个结果,对于付出艰辛劳动的冯塔纳学史上留下了不甚光彩的一页这个结果,对于付出艰辛劳动的冯塔纳当然是不公平的。

      但是,冯塔纳坚持不公开他的研究成果,也不能算是当然是不公平的但是,冯塔纳坚持不公开他的研究成果,也不能算是正确的做法,起码对于人类科学发展而言,是一种不负责任的态度正确的做法,起码对于人类科学发展而言,是一种不负责任的态度世界数学名人简介 爱因斯坦谜语爱因斯坦谜语 n1、在一条街上,有、在一条街上,有5座房子,喷了座房子,喷了5种颜色2、每个房里住着不同国籍的人、每个房里住着不同国籍的人3、每个人喝不同的饮料,抽不同品牌的香烟,养不同的宠物、每个人喝不同的饮料,抽不同品牌的香烟,养不同的宠物问题是:谁养鱼?问题是:谁养鱼? n提示:提示:1、英国人住红色房子、英国人住红色房子2、瑞典人养狗、瑞典人养狗3、白色房子丹麦人喝茶、白色房子丹麦人喝茶4、绿色房子在白色房子左面、绿色房子在白色房子左面5、绿色房子主人喝咖啡、绿色房子主人喝咖啡6、抽、抽Pall Mall 香烟的人养鸟香烟的人养鸟7、黄色房子主人抽、黄色房子主人抽Dunhill8、住在中间房子的人喝牛奶、住在中间房子的人喝牛奶9、挪威人住第一间房、挪威人住第一间房10、抽、抽Blends香烟的人住在养猫的人隔壁香烟的人住在养猫的人隔壁11、养马的人住抽、养马的人住抽Dunhill 香烟的人隔壁香烟的人隔壁12、抽、抽Blue Master的人喝啤酒的人喝啤酒13、德国人抽、德国人抽Prince香烟香烟14、挪威人住蓝色房子隔壁、挪威人住蓝色房子隔壁15、抽、抽Blends香烟的人有一个喝水的邻居香烟的人有一个喝水的邻居爱因斯坦在爱因斯坦在20世纪初出的这个谜语。

      他说世界上有世纪初出的这个谜语他说世界上有98%的人答不出来%的人答不出来.世界数学名人简介 阿基米德群牛问题阿基米德群牛问题 n公元前3世纪下半叶古希腊科学家阿基米德在论着《群牛问题》中记载了本问公元前3世纪下半叶古希腊科学家阿基米德在论着《群牛问题》中记载了本问题原文用诗句写成,大意是:西西里岛草原上有一大群牛,公牛和母牛各有题原文用诗句写成,大意是:西西里岛草原上有一大群牛,公牛和母牛各有4种颜色设W、X、Y、Z分别表示白、黑、黄、花色的公牛数,4种颜色设W、X、Y、Z分别表示白、黑、黄、花色的公牛数, w、x、w、x、y、z分别表示这白、黑、黄、花色的母牛数要求有W=(1/2+1/3)y、z分别表示这白、黑、黄、花色的母牛数要求有W=(1/2+1/3)XX +Y,X=(1/4+1/5)Z+Y,Z=(1/6+1/7)W+Y,+Y,X=(1/4+1/5)Z+Y,Z=(1/6+1/7)W+Y,w=(1/3+w=(1/3+ 1/4)(X+x),x=(1/4+1/5)(Z+z),1/4)(X+x),x=(1/4+1/5)(Z+z),z=(1/5+1/6)(Yz=(1/5+1/6)(Y +y),y=(1/6+1/7)(W+w),+y),y=(1/6+1/7)(W+w),(W+X)为一个正方形(数),(Y+Z(W+X)为一个正方形(数),(Y+Z )为一个三角数(即m(m+1))为一个三角数(即m(m+1)/2,m为正数)。

      求各种颜色牛的数目最后两个条件/2,m为正数)求各种颜色牛的数目最后两个条件 中的正方形数有两种中的正方形数有两种解释:一种是W+X=mn,(因为牛的身长与体宽不一样,排成正方形后两解释:一种是W+X=mn,(因为牛的身长与体宽不一样,排成正方形后两个边牛的数目不一样)称为「较简问题」,求解后牛的总数近6万亿,另一种个边牛的数目不一样)称为「较简问题」,求解后牛的总数近6万亿,另一种为W+为W+ X=nX=n2(长与宽的数目相等),称为「完全问题」即使没有最后两(长与宽的数目相等),称为「完全问题」即使没有最后两个条件,群牛问题的最小正数解也达几百万到上千万个条件,群牛问题的最小正数解也达几百万到上千万n1880年阿姗托尔提供了一种解答,导致二元二次方程1880年阿姗托尔提供了一种解答,导致二元二次方程 t2-du2=1,因,因d的值的值达400多万亿,所以完全问题的最小解中牛的总数已超过20多万位的数达400多万亿,所以完全问题的最小解中牛的总数已超过20多万位的数可见阿基米德当时未必解出过这个问题,而它的叙述与实际也不符历史上对可见阿基米德当时未必解出过这个问题,而它的叙述与实际也不符。

      历史上对这问题的研究丰富了初等数论的内容这问题的研究丰富了初等数论的内容世界数学名人简介 合理分配赌注问题合理分配赌注问题 n合理分配赌注问题(合理分配赌注问题(problem of rational division of stakes)被认为是概率论)被认为是概率论的科学起源,一般表述为:一场赌博因故中断,已知两个赌者当时的赌分及赢的科学起源,一般表述为:一场赌博因故中断,已知两个赌者当时的赌分及赢得赌博所需点数,求赌金该如何分配问题亦称「点的问题」或「得分问题」得赌博所需点数,求赌金该如何分配问题亦称「点的问题」或「得分问题」n  最早于1494年由意大利数学家帕乔利提出,16世纪中期的卡尔达诺  最早于1494年由意大利数学家帕乔利提出,16世纪中期的卡尔达诺和塔尔塔利亚等人也讨论过这类问题17世纪中叶法国人梅雷向数学家帕斯和塔尔塔利亚等人也讨论过这类问题17世纪中叶法国人梅雷向数学家帕斯卡重提这类问题,引起帕斯卡与另一数学家费马在1654年7月至10月间卡重提这类问题,引起帕斯卡与另一数学家费马在1654年7月至10月间的通信讨论,数学史上称这些通信为最早的概率论文献的通信讨论,数学史上称这些通信为最早的概率论文献。

      n  他们研究的问题有:两个赌徒各出32个金币,约定先赢三局为胜如果  他们研究的问题有:两个赌徒各出32个金币,约定先赢三局为胜如果其中甲赢了二局,乙赢了一局时中断,赌金如何分配;如果甲赢了二局,乙一其中甲赢了二局,乙赢了一局时中断,赌金如何分配;如果甲赢了二局,乙一局未赢或甲赢了一局,乙一局未赢时,赌金又如何分配帕斯卡用纯算术的方局未赢或甲赢了一局,乙一局未赢时,赌金又如何分配帕斯卡用纯算术的方法,费马则用组合方法都得到正确解答费马区分了独立概率事件和条件概率法,费马则用组合方法都得到正确解答费马区分了独立概率事件和条件概率事件,还讨论了某一赌徒在第一次轮到他掷骰子时不掷让出而应该得到的赌金事件,还讨论了某一赌徒在第一次轮到他掷骰子时不掷让出而应该得到的赌金比例,甚至应用了n重伯努利试验的思想帕斯卡则进一步提出了三个赌徒间比例,甚至应用了n重伯努利试验的思想帕斯卡则进一步提出了三个赌徒间分配赌金的问题1657年荷兰科学家惠更斯在此基础上潜心钻研,写成了分配赌金的问题1657年荷兰科学家惠更斯在此基础上潜心钻研,写成了《论赌博中的计算》一书,第一次提出数学期望的概念,成为概率论的较早论《论赌博中的计算》一书,第一次提出数学期望的概念,成为概率论的较早论着。

      到1713年雅各布.伯努利的《猜度术》出版后,概率论已成为数学科着到1713年雅各布.伯努利的《猜度术》出版后,概率论已成为数学科学的一个分支了学的一个分支了世界数学名人简介 四色猜想四色猜想 n世界近代三大数学难题之一四色猜想的提出来自英国世界近代三大数学难题之一四色猜想的提出来自英国1852年,毕业于年,毕业于伦敦大学的弗南西斯伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:一种有趣的现象:"看来,每幅地图都可以用四种颜色着色,使得有共同边看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色界的国家着上不同的颜色"这个结论能不能从数学上加以严格证明呢?他这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试兄弟二人为证明这一问题而使用的和在大学读书的弟弟格里斯决心试一试兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展稿纸已经堆了一大叠,可是研究工作没有进展n    1852年年10月月23日,他的弟弟就这个问题的证明请教他的老师、著名数日,他的弟弟就这个问题的证明请教他的老师、著名数学家德学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。

      哈密尔顿接到摩尔根的信后,对己的好友、著名数学家哈密尔顿爵士请教哈密尔顿接到摩尔根的信后,对四色问题进行论证但直到四色问题进行论证但直到1865年哈密尔顿逝世为止,问题也没有能够解年哈密尔顿逝世为止,问题也没有能够解决n    1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题世界上许多一流的数学个问题,于是四色猜想成了世界数学界关注的问题世界上许多一流的数学家都纷纷参加了四色猜想的大会战家都纷纷参加了四色猜想的大会战1878~~1880年两年间,著名的律师兼年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了理,大家都认为四色猜想从此也就解决了世界数学名人简介 n    11年后,即年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的不久,泰勒的证明也被人们否定了后来,越来越多的数明是错误的。

      不久,泰勒的证明也被人们否定了后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获于是,人们开始认识到,这个貌学家虽然对此绞尽脑汁,但一无所获于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路们的努力,为后世的数学家揭示四色猜想之谜铺平了道路n  进入  进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行想法在进行1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于国数学家富兰克林于1939年证明了年证明了22国以下的地图都可以用四色着色国以下的地图都可以用四色着色1950年,有人从年,有人从22国推进到国推进到35国1960年,有人又证明了年,有人又证明了39国以下的国以下的地图可以只用四种颜色着色;随后又推进到了地图可以只用四种颜色着色;随后又推进到了50国看来这种推进仍然国看来这种推进仍然十分缓慢。

      电子计算机问世以后,由于演算速度迅速提高,加之人机对十分缓慢电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程话的出现,大大加快了对四色猜想证明的进程1976年,美国数学家阿年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了个小时,作了100亿判断,终于完成了四色定理的证明四色猜想的计亿判断,终于完成了四色定理的证明四色猜想的计算机证明,轰动了世界它不仅解决了一个历时算机证明,轰动了世界它不仅解决了一个历时100多年的难题,而且多年的难题,而且有可能成为数学史上一系列新思维的起点不过也有不少数学家并不满有可能成为数学史上一系列新思维的起点不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法世界数学名人简介 。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.