
南昌市高中新课程复习训练题数学(函数1)1.doc
6页南昌市高中新课程复习训练题数学(函数1)一、选择题(本题共12小题,每小题5分,共60分) 1.已知集合A=R,B=R+,f:A→B是从A到B的一个映射,若f:x→2x-1,则B中的元素3的原象为 ( ) A. 1 B.1 C.2 D.3 2.函数f(x)=的定义域是 ( ) A.-∞,0] B.[0,+∞ C.(-∞,0) D.(-∞,+∞) 3.设f(x)=|x-1|-|x|,则f[f()]= ( ) A. - B.0 C. D.14.若函数f(x) = + 2x + log2x的值域是 {3, -1, 5 + , 20},则其定义域是 ( ) (A) {0,1,2,4} (B) {,1,2,4} (C) {,2,4} (D) {,1,2,4,8}5.反函数是 ( ) A. B. C. D.6.若任取x1,x2∈[a,b],且x1≠x2,都有成立,则称f(x) 是[a,b]上的凸函数。
试问:在下列图像中,是凸函数图像的为 ( ) 7..函数f(x)=在区间(-2,+∞)上单调递增,则实数a的取值范围是( ) A.(0,) B.( ,+∞) C.(-2,+∞) D.(-∞,-1)∪(1,+∞)8.下列函数既是奇函数,又在区间上单调递减的是 ( ) A. B. C. D. 9.设函数|| + b+ c 给出下列四个命题: ①c = 0时,y是奇函数 ②b0 , c >0时,方程0 只有一个实根 ③y的图象关于(0 , c)对称 ④方程0至多两个实根 其中正确的命题是 ( ) A.①、④ B.①、③ C.①、②、③ D.①、②、④10.已知函数f(x)=3-2|x|,g(x)=x2-2x,构造函数F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当f(x)
则其中是F函数的序号是___________________ 三、解答题(本题共6小题,共74分) 17.(本小题满分12分)判断y=1-2x3 在(-)上的单调性,并用定义证明 18.(本小题满分12分)二次函数f(x)满足且f(0)=1. (1) 求f(x)的解析式; (2) 在区间上,y= f(x)的图象恒在y=2x+m的图象上方,试确定实数m的范围. 19.(本小题满分12分)已知函数(a,b为常数)且方程f(x)-x+12=0有两个实根为x1=3, x2=4. (1)求函数f(x)的解析式; (2)设k>1,解关于x的不等式;. 20.(本小题满分12分)已知某商品的价格上涨x%,销售的数量就减少mx%,其中m为正的常数 (1)当m=时,该商品的价格上涨多少,就能使销售的总金额最大? (2)如果适当地涨价,能使销售总金额增加,求m的取值范围21.已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x. (Ⅰ)若f(2)=3,求f(1);又若f(0)=a,求f(a); (Ⅱ)设有且仅有一个实数x0,使得f(x0?)= x0,求函数f(x)的解析表达式. 22.(本小题满分14分)已知函数=+有如下性质:如果常数>0,那么该函数在0,上是减函数,在,+∞上是增函数. (1)如果函数=+(>0)的值域为6,+∞,求的值; (2)研究函数=+(常数>0)在定义域内的单调性,并说明理由; (3)对函数=+和=+(常数>0)作出推广,使它们都是你所推广的函数的特例. (4)(理科生做)研究推广后的函数的单调性(只须写出结论,不必证明),并求函数=+(是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论). 南昌市高中新课程复习训练题 数学(函数(一))参考答案 一、选择题 题号123456789101112答案CADBBC BDC ABB 二、填空题 (13).2; (14). -2 ;(15). (-∞?1)∪(3,+∞) ;(16). ①④⑤ 三、解答题 17.证明:任取x1,x2R,且-
或利用导数来证明(略) 18. 解: (1)设f(x)=ax2+bx+c,由f(0)=1得c=1,故f(x)=ax2+bx+1. ∵f(x+1)-f(x)=2x,∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x. 即2ax+a+b=2x,所以,∴f(x)=x2-x+1. (2)由题意得x2-x+1>2x+m在[-1,1]上恒成立.即x2-3x+1-m>0在[-1,1]上恒成立. 设g(x)= x2-3x+1-m,其图象的对称轴为直线x=,所以g(x) 在[-1,1]上递减. 故只需g(1)>0,即12-3×1+1-m>0,解得m<-1. 19.解:(1)将得 (2)不等式即为 即 ①当 ②当 ③. 20.解:(1)设商品现在定价a元,卖出的数量为b个 由题设:当价格上涨x%时,销售总额为y=a(1+x%)b(1-mx%), 即 ,(0 (2)二次函数,在上递增,在上递减, 适当地涨价能使销售总金额增加,即 在(0,)内存在一个区间,使函数y在此区间上是增函数,所以 , 解得,即所求的取值范围是(0,1). 21.解:(Ⅰ)因为对任意x∈R,有f(f(x)-x2 + x)=f(x)- x2 +x, 所以f(f(2)- 22+2)=f(2)-22+2. 又由f(2)=3,得f(3-22+2)-3-22+2,即f(1)=1. 若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a. (Ⅱ)因为对任意x∈R,有f(f(x))-x2 +x)=f(x)-x2 +x. 又因为有且只有一个实数x0,使得f(x0)- x0.所以对任意xεR,有f(x)-x2 +x= x0. 在上式中令x= x0,有f(x0)-x + x0= x0, 又因为f(x0)- x0,所以x0-x=0,故x0=0或x0=1. 若x0=0,则f(x)- x2 +x=0,即f(x)= x2 -x. 但方程x2 -x=x有两上不同实根,与题设条件矛质,故x2≠0. 若x2=1,则有f(x)-x2 +x=1,即f(x)= x2 -x+1.易验证该函数满足题设条件. 综上,所求函数为f(x)= x2 -x+1(xR) 22.解:(1)易知,时,。 (2)=+是偶函数易知,该函数在上是减函数,在上是增函数; 则该函数在上是减函数,在上是增函数 (3)推广:函数, 当为奇数时,,是减函数;,是增函数 ,是增函数;,是减函数 当为偶数时,,是减函数;,是增函数 ,是减函数;,是增函数 (4)(理科生做)=+ 当时, ∴,是减函数;,是增函数 ∵ ∴函数=+在区间[,2]上的最大值为,最小值为。
