好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

聚氨酯市场研究报告(7篇).docx

8页
  • 卖家[上传人]:金诺****简谱
  • 文档编号:484422919
  • 上传时间:2024-05-10
  • 文档格式:DOCX
  • 文档大小:17.50KB
  • / 8 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 聚氨酯市场研究报告(7篇)聚氨酯市场研究报告篇1 近年来,全球聚氨酯市场持续增长,受益于汽车、建筑、家具和鞋类等行业的快速发展聚氨酯是一种多功能材料,具有优异的性能和广泛的应用领域,因此备受青睐本篇文章将分析聚氨酯市场的发展趋势、关键驱动因素以及未来的发展前景 首先,聚氨酯在汽车行业中的应用需求不断增长,这主要得益于对轻量化材料的追求和对车身强度、舒适性和减震效果的要求聚氨酯泡沫被广泛应用于汽车座椅、车门、车顶等部位,以提高舒适性和安全性能此外,随着电动汽车和智能汽车的兴起,聚氨酯材料的应用前景更加广阔 其次,建筑行业对于节能材料的需求也促进了聚氨酯市场的增长由于聚氨酯泡沫具有优异的隔热和隔音性能,因此被广泛应用于建筑保温材料、屋顶和墙体材料等方面随着全球对于可持续发展的重视和建筑结构节能标准的提高,聚氨酯在建筑领域的需求将持续增长 此外,家具和鞋类行业对于舒适性和功能性材料的需求也成为聚氨酯市场增长的驱动因素聚氨酯材料被广泛用于制作家具和鞋类产品中的填充材料和表面涂层,以提高产品的舒适性和耐久性 然而,聚氨酯市场也面临一些挑战,如原材料价格波动、环保压力和技术创新的竞争等。

      随着全球环保意识的提高,对于可再生原材料和低VOC产品的需求也在不断增长,这对于传统聚氨酯材料的市场份额带来一定影响因此,聚氨酯生产企业需要不断加大技术研发投入,提高产品的环保性能和可持续性 在未来,聚氨酯市场仍然具有巨大的发展潜力随着全球经济的复苏和产业结构的升级,对于高性能、多功能材料的需求将继续增长,聚氨酯作为一种具有优异性能的多功能材料,将在各个领域拥有广阔的市场空间同时,新兴领域如医疗器械、航空航天等也将为聚氨酯市场带来新的增长机遇 综上所述,聚氨酯市场具有良好的发展前景,但也面临一些挑战,企业需要不断加强创新能力和环保意识,以应对市场变化和提升竞争力相信在全球经济的复苏和产业结构升级的推动下,聚氨酯市场将迎来更加广阔的发展空间 聚氨酯市场研究报告篇2 合成聚氨酯的基本原料为异氰酸酯、多元醇、催化剂以及扩链剂等 (1)异氰酸酯异氰酸酯一般含有两个或两个以上的异氰酸酯基,异氰酸酯基团很活泼,可以跟醇、胺、羧酸、水等发生反应目前聚氨酯产品中主要使用的异氰酸酯为甲苯二异氰酸酯(TDI)、二本基甲烷二异氰酸酯(MDI)和多亚甲基对苯多异氰酸酯(PAPI)。

      TDI主要用于软质泡沫塑料;MDI可用于半硬质、硬质泡沫塑料机胶黏剂等;PAPI由于含有三个官能度,可用于热固性的硬质泡沫塑料、混炼以及浇注制品 (2)多元醇多元醇构成聚氨酯结构中的弹性部分,常用的有聚醚多元醇和聚酯多元醇多元醇在聚氨酯中的含量决定聚氨酯树脂的软硬程度、柔顺性和刚性聚醚多元醇为多元醇、多元胺或其他含有活泼氢的有机化合物与氧化烯烃开环聚合而成,具有弹性大、粘度低等优点这类多元醇用的比较多,特别是应用于软质泡沫塑料和反应注射成型产品中聚酯多元醇是以各种有机多元酸和多 元醇通过酯化反应而得到的二元酸和二元醇合成的线型聚酯多元醇主要用于软质聚氨酯,二元酸与三元醇合成的支链型聚酯多元醇主要用于硬质聚氨酯 (3)催化剂在聚氨酯聚合过程中还需要加入催化剂,以加速聚合过程,一般有胺类和锡类两种,常用的胺类有三乙烯二胺、N—氨基啉等,锡类有二月桂酸二丁基锡、辛酸亚锡等 (4)扩链剂常用的扩链剂是低相对分子质量的二元醇和二元胺,它们与异氰酸酯反应生成聚合物中的硬段常用的扩链剂有乙二醇、丙二醇、丁二醇、己二醇等二元胺一般都采用芳香族二元胺,如二苯甲烷二胺、二氯二苯基甲烷二胺等。

      聚氨酯市场研究报告篇3 聚醚、聚酯等低聚物多元醇组成软段软段在聚氨酯中占大部分,不同的低聚物多元醇与二异氰酸酯制备的聚氨酯性能各不相同 极性强的聚酯作软段得到的聚氨酯弹性体及泡沫的力学性能较好因为,聚酯制成的聚氨酯含极性大的酯基,这种聚氨酯内部不仅硬段间能够形成氢键,而且软段上的极性基团也能部分地与硬段上的极性基团形成氢键,使硬相能更均匀地分布于软相中,起到弹性交联点的作用在室温下某些聚酯可形成软段结晶,影响聚氨酯的性能聚酯型聚氨酯的强度、耐油性、热氧化稳定性比PPG聚醚型的高,但耐水解性能比聚醚型的差聚四氢呋喃(PTMEG)型聚氨酯,由于PTMEG规整结构,易形成结晶,强度与聚酯型的不相上下一般来说,聚醚型聚氨酯,由于软段的醚基较易旋转,具有较好的柔顺性,优越的低温性能,并且聚醚中不存在相对易于水解的酯基,其耐水解性比聚醚型好聚醚软段的醚键的α碳容易被氧化,形成过氧化物自由基,产生一系列的氧化降解反应以聚丁二烯为软段的聚氨酯,软段极性弱,软硬段间相容性差,弹性体强度较差含侧链的软段,由于位阻作用,氢键弱,结晶性差,强度比相同软段主链的无侧基聚氨酯差 软段的分子量对聚氨酯的力学性能有影响,一般来说,假定聚氨酯分子量相同,其软段若为聚酯,则聚氨酯的强度随作聚酯二醇分子量的增加而提高;若软段聚醚,则聚氨酯的强度随聚醚二醇分子量的增加而下降,不过伸长率却上升。

      这是因为聚酯型软段本身极性就较强,分子量大则结构规整性高,对改善强度有利,而聚醚软段则极性较弱,若分子量增大,则聚氨酯中硬段的相对含量就减小,强度下降 软段的结晶性对线性聚氨酯链段的结晶性有较大的贡献一般来说,结晶性对提高聚氨酯制品的性能是有利的,但有时结晶会降低材料的低温柔韧性,并且结晶性聚合物常常不透明为了避免结晶,可打乱分子的规整性,如采用共聚酯或共聚醚多元醇,或混合多元醇、混合扩链剂等 聚氨酯市场研究报告篇4 聚氨酯的硬段由反应后的异氰酸酯或多异氰酸酯与扩链剂组成,含有芳基、氨基甲酸酯基、取代脲基等强极性基团,通常芳香族异氰酸酯形成的刚性链段构象不易改变,常温下伸展成棒关状硬链段通常影响聚合物的软化熔融温度及高温性能 异氰酸酯的结构影响硬段的刚性,因而异氰酸酯的种类对聚氨酯材料的性能有很大影响芳族异氰酸酯分子中刚性芳环的存在、以及生成的氨基甲酸酯键赋予聚氨酯较强的内聚力对称二异氰酸酯使聚氨酯分子结构规整有序,促进聚合物的结晶,故4,4′—二苯基甲烷二异氰酸酯(MDI)比不对称的二异氰酸酯(如TDI)所制聚氨酯的内聚力大,模量和撕裂强度等物理机械性能高芳香族异氰酸酯制备的聚氨酯由于硬段含刚性芳环,因而使其硬段内聚强度增大,材料强度一般比脂肪族异氰酸酯型聚氨酯的大,但抗紫外线降解性能较差,易泛黄。

      脂肪族聚氨酯则不会泛黄不同的异氰酸酯结构对聚氨酯的耐久性也有不同的影响,芳香族比脂肪族异氰酸酯的聚氨酯抗热氧化性能好,因为芳环上的氢较难被氧化 扩链剂对聚氨酯性能也有影响含芳环的二元醇与脂肪族二元醇扩链的聚氨酯相比有较好的强度二元胺扩链剂能形成脲键,脲键的极性比氨酯键强,因而有二元胺扩链的聚氨酯比二元醇扩链的聚氨酯具有较高的机械强度、模量、粘附性、耐热性,并且还有较好的低温性能浇注型聚氨酯弹性体多采用芳香族二胺MOCA作扩链剂,除固化工艺因素外,就是因为弹性体具有良好的综合性能 聚氨酯的软段在高温下短时间不会很快被氧化和发生降解,但硬段的耐热性影响聚氨酯的耐温性能,硬段中可能出现由异氰酸酯反应形成的几种键基团,其热稳定性顺序如下: 异氰脲酸酯>脲>氨基甲酸酯>缩二脲>脲基甲酸酯 其中最稳定的异氰酸酯在270℃左右才开始分解氨酯键的热稳定性随着邻近氧原子碳原子上取代基的增加及异氰酸酯反应性的增加或立体位阻的增加而降低并且氨酯键两侧的芳香族或脂肪族基团对氨酯键的热分解性也有影响,稳定性顺序如下: R—NHCOOR>Ar—NHCOOR>R—NHCOOAr>Ar—NHCOOAr 提高聚氨酯中硬段的含量通常使硬度增加,弹性降低。

      聚氨酯市场研究报告篇5 聚氨酯的性能,归根结底受大分子链形态结构的影响特别是聚氨酯弹性体材料,软段和硬段的相分离对聚氨酯的性能至关重要,聚氨酯的独特的柔韧性和宽范围的物性可用两相形态学来解释聚氨酯材料的性能在很大程序上取决于软硬段的相结构及微相分离程度适度的相分离有利于改善聚合物的性能 从微观形态结构看,在聚氨酯中,强极性和刚性的氨基甲酸酯基等基团由于内聚能大,分子间可以形成氢键,聚集在一起形成硬段微相区,室温下这些微区呈玻璃态次晶或微晶;极性较弱的聚醚链段或聚酯等链段聚集在一起形成软段相区软段和硬段虽然有一定的混容,但硬段相区与软段相区具有热力学不相容性质,导致产生微观相分离,并且软段微区及硬段微区表现出各自的玻璃化温度软段相区主要影响材料的弹性及低温性能硬段之间的链段吸引力远大于软段之间的链段吸引力,硬相不溶于软相中,而是分布其中,形成一种不连续的微相结构,常温下在软段中起物理交联点的作用,并起增强作用故硬段对材料的力学性能,特别是拉伸强度、硬度和抗撕裂强度具有重要影响这就是聚氨酯弹性体中即使没有化学交联,常温下也能显示高强度、高弹性的原因聚氨酯弹性体中能否发生微相分离、微相分离的程度、硬相在软相中分布的均匀性都直接影响弹性体的力学性能。

      聚氨酯市场研究报告篇6 分子内适度的交联可使聚氨酯材料硬度、软化温度和弹性模量增加,断裂伸长率、永久变形和在溶剂中的溶胀性降低对于聚氨酯弹性体,适当交联,可制得机械强度优良、硬度高、富有弹性,且有优良耐磨、耐油、耐臭氧及耐热性等性能的材料但若交联过度,可使拉伸强度、伸长率等性能下降 聚氨酯化学交联一般是由多元醇(偶尔多元胺或其它多官能度原料)原料或由高温、过量异氰酸酯而形成的交联键(脲基甲酸酯和缩二脲等)引起,交联密度取决于原料的用量与氢键引起的物理交联相比,化学交联具有较好的热稳定性 聚氨酯泡沫塑料是交联型聚合物,其中软制裁泡沫塑料由长链聚醚(或聚酯)二醇及三醇与二异氰酸酯及扩链交联剂制成,具有较好的弹性、柔软性;硬质泡沫塑料由高官能度、低分子量的聚醚多元醇与多异氰酸酯(PAPI)等制成,由于很高的交联度和较多刚性苯环的存在,材料较脆有研究表明,随着脲基甲酸酯、缩二脲等基团的增加,软质聚氨酯泡沫塑料的耐疲劳性能下降 聚氨酯市场研究报告篇7 氢键存在于含电负性较强的氮原子、氧原子的基团和含H原子的基团之间,与基团内聚能大小有关,硬段的氨基甲酸酯或脲基的极性强,氢键多存在于硬段之间。

      据报道,聚氨酯中的多种基团的亚胺基(NH)大部分能形成氢键,而其中大部分是NH与硬段中的羰基形成的,小部分与软段中的醚氧基或酯羰基之间形成的与分子内化学键的键合力相比,氢键是一种物理吸引力,极性链段的紧密排列促使氢键形成;在较高温度时,链段接受能量而活动,氢键消失氢键起物理交联作用,它可使聚氨酯弹性体具有较高的强度、耐磨性氢键越多,分子间作用力越强,材料的强度越高。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.