
2022年全国统一高考数学试卷(理科)(甲卷)解析版.doc
33页2022年全国统一高考数学试卷(理科)(甲卷)一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)若z=﹣1+i,则=( )A.﹣1+i B.﹣1﹣i C.﹣+i D.﹣﹣i2.(5分)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如图:则( )A.讲座前问卷答题的正确率的中位数小于70% B.讲座后问卷答题的正确率的平均数大于85% C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差 D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差3.(5分)设全集U={﹣2,﹣1,0,1,2,3},集合A={﹣1,2},B={x|x2﹣4x+3=0},则∁U(A∪B)=( )A.{1,3} B.{0,3} C.{﹣2,1} D.{﹣2,0}4.(5分)如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )A.8 B.12 C.16 D.205.(5分)函数y=(3x﹣3﹣x)cosx在区间[﹣,]的图像大致为( )A. B. C. D.6.(5分)当x=1时,函数f(x)=alnx+取得最大值﹣2,则f′(2)=( )A.﹣1 B.﹣ C. D.17.(5分)在长方体ABCD﹣A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B所成的角均为30°,则( )A.AB=2AD B.AB与平面AB1C1D所成的角为30° C.AC=CB1 D.B1D与平面BB1C1C所成的角为45°8.(5分)沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”.如图,是以O为圆心,OA为半径的圆弧,C是AB的中点,D在上,CD⊥AB.“会圆术”给出的弧长的近似值s的计算公式:s=AB+.当OA=2,∠AOB=60°时,s=( )A. B. C. D.9.(5分)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S甲和S乙,体积分别为V甲和V乙.若=2,则=( )A. B.2 C. D.10.(5分)椭圆C:+=1(a>b>0)的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线AP,AQ的斜率之积为,则C的离心率为( )A. B. C. D.11.(5分)设函数f(x)=sin(ωx+)在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( )A.[,) B.[,) C.(,] D.(,]12.(5分)已知a=,b=cos,c=4sin,则( )A.c>b>a B.b>a>c C.a>b>c D.a>c>b二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)设向量,的夹角的余弦值为,且||=1,||=3,则(2+)•= .14.(5分)若双曲线y2﹣=1(m>0)的渐近线与圆x2+y2﹣4y+3=0相切,则m= .15.(5分)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为 .16.(5分)已知△ABC中,点D在边BC上,∠ADB=120°,AD=2,CD=2BD.当取得最小值时,BD= .三、解答题:共70分解答应写出文字说明、证明过程或演算步骤第17~21题为必考题,每个试题考生都必须作答第22、23题为选考题,考生根据要求作答一)必考题:共60分17.(12分)记Sn为数列{an}的前n项和.已知+n=2an+1.(1)证明:{an}是等差数列;(2)若a4,a7,a9成等比数列,求Sn的最小值.18.(12分)在四棱锥P﹣ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1,AB=2,DP=.(1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.19.(12分)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望.20.(12分)设抛物线C:y2=2px(p>0)的焦点为F,点D(p,0),过F的直线交C于M,N两点.当直线MD垂直于x轴时,|MF|=3.(1)求C的方程;(2)设直线MD,ND与C的另一个交点分别为A,B,记直线MN,AB的倾斜角分别为α,β.当α﹣β取得最大值时,求直线AB的方程.21.(12分)已知函数f(x)=﹣lnx+x﹣a.(1)若f(x)≥0,求a的取值范围;(2)证明:若f(x)有两个零点x1,x2,则x1x2<1.(二)选考题:共10分。
请考生在第22、23题中任选一题作答如果多做,则按所做的第一题计分[选修4-4:坐标系与参数方程](10分)22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(t为参数),曲线C2的参数方程为(s为参数).(1)写出C1的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C3的极坐标方程为2cosθ﹣sinθ=0,求C3与C1交点的直角坐标,及C3与C2交点的直角坐标.[选修4-5:不等式选讲](10分)23.已知a,b,c均为正数,且a2+b2+4c2=3,证明:(1)a+b+2c≤3;(2)若b=2c,则+≥3.2022年全国统一高考数学试卷(理科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)若z=﹣1+i,则=( )A.﹣1+i B.﹣1﹣i C.﹣+i D.﹣﹣i【分析】由已知求得,代入,则答案可求.【解答】解:∵z=﹣1+i,∴=4,则=.故选:C.【点评】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.2.(5分)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如图:则( )A.讲座前问卷答题的正确率的中位数小于70% B.讲座后问卷答题的正确率的平均数大于85% C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差 D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【分析】对于A,求出讲座前问卷答题的正确率的中位数进行判断;对于B,求出讲座后问卷答题的正确率的平均数进行判断;对于C,由图形知讲座前问卷答题的正确率相对分散,讲座后问卷答题的正确率相对集中,进行判断;对于D,求出讲座后问卷答题的正确率的极差和讲座前正确率的极差,由此判断D.【解答】解:对于A,讲座前问卷答题的正确率从小到大为:60%,60%,65%,65%,70%,75%,80%,85%,90%,95%,∴讲座前问卷答题的正确率的中位数为:(70%+75%)/2=72.5%,故A错误;对于B,讲座后问卷答题的正确率的平均数为:(80%+85%+85%+85%+85%+90%+90%+95%+100%+100%)=89.5%>85%,故B正确;对于C,由图形知讲座前问卷答题的正确率相对分散,讲座后问卷答题的正确率相对集中,∴讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,故C错误;对于D,讲座后问卷答题的正确率的极差为:100%﹣80%=20%,讲座前正确率的极差为:95%﹣60%=35%,∴讲座后问卷答题的正确率的极差小于讲座前正确率的极差,故D错误.故选:B.【点评】本题考查命题真假的判断,考查散点图、中位数、平均数、标准差、极差等基础知识,考查运算求解能力,是基础题.3.(5分)设全集U={﹣2,﹣1,0,1,2,3},集合A={﹣1,2},B={x|x2﹣4x+3=0},则∁U(A∪B)=( )A.{1,3} B.{0,3} C.{﹣2,1} D.{﹣2,0}【分析】求解一元二次方程化简B,再由并集与补集运算得答案.【解答】解:∵B={x|x2﹣4x+3=0}={1,3},A={﹣1,2},∴A∪B={﹣1,1,2,3},又U={﹣2,﹣1,0,1,2,3},∴∁U(A∪B)={﹣2,0}.故选:D.【点评】本题考查交、并、补集的混合运算,是基础题.4.(5分)如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )A.8 B.12 C.16 D.20【分析】由多面体的三视图得该多面体是一正四棱柱ABCD﹣A1B1C1D1,四棱柱的底面是直角梯形ABCD,AB=4,AD=2,AA1=2,AA1⊥平面ABCD,由此能求出该多面体的体积.【解答】解:由多面体的三视图得该多面体是一正四棱柱ABCD﹣A1B1C1D1,四棱柱的底面是直角梯形ABCD,如图,AB=4,AD=2,AA1=2,AA1⊥平面ABCD,∴该多面体的体积为:V==12.故选:B.【点评】本题考查多面体的体积的求法,考查多面体的三视图等基础知识,考查运算求解能力,是中档题.5.(5分)函数y=(3x﹣3﹣x)cosx在区间[﹣,]的图像大致为( )A. B. C. D.【分析】判断函数的奇偶性,结合函数的特殊值判断点的位置,推出选项即可.【解答】解:f(x)=(3x﹣3﹣x)cosx,可知f(﹣x)=(3﹣x﹣3x)cos(﹣x)=﹣(3x﹣3﹣x)cosx=﹣f(x),函数是奇函数,排除BD;当x=1时,f(1)=(3﹣3﹣1)cos1>0,排除C.故选:A.【点评】本题考查函数的奇偶性以及函数的图象的判断,是中档题.6.(5分)当x=1时,函数f(x)=alnx+取得最大值﹣2,则f′(2)=( )A.﹣1 B.﹣ C. D.1【分析】由已知求得b,再由题意可得f′(1)=0求得a,得到函数解析式,求其导函数,即可求得f′(2).【解答】解:由题意f(1)=b=﹣2,则f(x)=alnx﹣,则f′(x)=,∵当x=1时函数取得最值,可得x=1也是函数的一个极值点,∴f′(1)=a+2=0,即a=﹣2.∴f′(x)=,易得函数在(0,1)上单调递增,在(1,+∞)上单调递减,故x=1处,函数取得极大值,也是最大值,则f′(2)=.故选:B.【点评】本题考查导数的应用,考查导数最值与极值的关系,考查运算求解能力,是中档题.7.(5分)在长方体ABCD﹣A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B所成的角均为30°,则( )A.AB=2AD B.AB与平面AB1C1D所成的角为30° C.AC=CB1 D.B1D与平面BB1C1C所成的角为45°【分析】不妨令AA1=1,可根据直线与平面所成角的定义,确定长方体的各棱长,即可求解.【解答】解:如图所示,连接AB1,BD,不妨令AA1=1,在长方体ABCD﹣A1B1C1D1中,AD⊥面AA1B1B,BB1⊥面ABCD,所以∠B1DB和∠DB1A分别为B1D与平面ABCD和平面AA1B1B所成的角,即∠B1DB=∠DB1A=30°,所以在Rt。












