函数、极限和连续试题及答案(可编辑).docx
23页函数、极限和连续试题及答案第一篇:函数、极限和连续试题及答案 极限和连续试题(A卷) 1.选择题(正确答案可能不止一个) (1)下列数列收敛的是( ) A. xnn-1n=(-1)n B. xn1n=(-1)n C. xnpn=sin 2 D. xn=2n (2)下列极限存在的有( ) A. lim1x®¥sinx B. xlim®¥xsinx C. lim11x®02x- 1 D. limn®¥2n2+1 (3)下列极限不正确的是( ) A. lim(x+1)=2 B. lim1x®1-x®0x+1=1 12C. lim4x-2xx®2=¥ D. xlim®0+e=+¥ (4)下列变量在给定的变化过程中,是无穷小量的有( ) A. 2-x-1(x®0) B. sinxx(x®0) 2C. e-x(x®+¥) D. xx+1(2-sin1x)(x®0) ìï1(5)如果函数f(x)=xsinx,ïx<0;ía,x=0;在x=0处连续,则a、b的值为(ïïîxsin1x+b,x>0.A. a=0,b=0 B. a=1,b=1 C. a=1,b=0 D. a=0,b=1 2.求下列极限: (1)lim(x322x®1-3x+1); (2)xlim®-2(3x+2x-5); (3)lim1x(1+x-3); (4)limx-3®0x®2x2+x; x2-8x2(5)limx®3x-3; (6)lim-16x®4x-4; (7)limx2-1x-2x®12x2-x-1; (8)lim; x®2x-2。
)(9)limx®0cosx1+x-1; (10)lim; x®¥xxx3+3x-1x4+3x-1(11)lim; (12)lim; x®¥3x3-xx®¥5x4-x3x3+3x-19x3+3x-1(13)lim; (14)lim; 42x®¥x®¥x-xx-1x3. (15)limx®03xsinì2-x,x<0ï23.设f(x)=í2x+1,0£x<1,求limf(x),limf(x),limf(x),limf(x) 1x®0x®3x®-1x®ï3+(x-1)3,x³12î4.证明:x+sinx~x(x®0+) 5.求下列函数的连续区间: ì2x-1,x<1;(1)y=ln(3-x)+9-x; (2)y=í2 x+1,x³1.î26.证明limx®2x-2不存在. x-21ìxsin,-¥ 9.若lim(x®¥x+1 答案 1.(1)B; (2)BD; (3)C; (4) ACD ; (5)B. 2.(1)-1; (2)3; (3) 21; (4)-; (5)¥; (6)8; 36 (7)21111; (8); (9); (10)0; (11); (12); 323522(13)0; (14)¥; (15) 1. 9x®123.limf(x)=3, limf(x)不存在, limf(x)=x®-1x®03, limf(x)=11. 2x®35.(1)[-3,3); (2)(-¥,1)U(1,+¥). 7.f(x)在x®0时的左极限为0,在x®0时右极限不存在 8.极限值为1. 9.a=1,b=-1. 第二篇:函数极限连续试题 ····· ········密············································订·········线·································装·····系·····封················· ··················__ __:_ :___: ___________名______________业_姓_____ _号_____ _::___级_ ____别年专______学 · ·····密·········· ·············································卷···线·································阅·······封········································ 函数 极限 连续试题 1. 设f(x)= 求 (1) f(x)的定义域; (2) 12{f[f(x)]}2 ; (3) lim f(x)x®0x . 2.试证明函数f(x)=x3e-x2 为R上的有界函数. 3.求lim1n®¥nln[(1+1n)(1+2 n) (1+nn )]. 4. 设在平面区域D上函数f(x,y)对于变量x连续,对于变量y 的一阶偏导数有界,试证:f(x,y)在D上连续. (共12页)第1页 5.求lim( 2x+3x+4x1 x®03 )x. 1(1+x)x 6.求lim[ x®0e]x. 7.设f(x)在 [-1,1]上连续,恒不为0,求x®0 8.求lim(n!)n2 n®¥ . 9.设x®¥ ax+b)=2,试确定常数a和b的值. (共12页)第2页 10.设函数f(x)=limx2n-1+ax+b n®¥1+x 2n连续,求常数a,b的值. 11.若limsin6x+xf(x)6+f(xx®0x3=0,求lim) x®0x2 . 12.设lim ax-sinx x®0=c(c¹0),求常数a,b,c的值. òxln(1+t3)btdt 13. 判断题:当x®0时,òx 1-cost2 0t 是关于x的4阶无穷小量. 114. 设a为常数,且lim( ex -px®0 2+a×arctan1 x )存在,求a的值,并计算极限. ex+1 (共12页)第3页 215.设lim[ ln(1+ex )x®0 1+a×[x]]存在,且aÎN+,求a的值,并计算极限. ln(1+ex ) 16. 求n(a>0). æn 17. 求limn®¥ççè2(a³0,b³0). ø ln(1+ f(x) 18.设lim ) x®0 3x-1 =5,求limf(x)x®0x2. 19.设f(x)为三次多项式,且xlim f(x)f(x)f®2ax-2a=xlim®4ax-4a=1,求xlim(x) ®3ax-3a 的值. (共12页)第4页 24.设连续函数f(x)在[1,+¥)上是正的,单调递减的,且 dn=åf(k)-òf(x)dx,试证明:数列{dn}收敛. n n 20.设x<1,求lim(1+x)(1+x2)(1+x4n n®¥ ) (1+x2). 21.试证明:(1) ì(í1n111î1+n)+1ü ý þ 为递减数列;(2) n+1





