好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

时间序列特性分析教材.ppt

50页
  • 卖家[上传人]:F****n
  • 文档编号:96389899
  • 上传时间:2019-08-25
  • 文档格式:PPT
  • 文档大小:438.50KB
  • / 50 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 专题 时间序列特性分析,1. 时序特性的研究工具,自相关 偏自相关 Eviews中自(偏自)相关分析的操作,1.1.自相关, AC,Autocorrelation,自相关:构成时间序列的每个序列值 之间的简单相关关系称为自相关 序列自相关程度由自相关系数度量,表示时间序列中相隔k期的观测值之间的相关程度 自相关系数的取值范围[-1,1],越接近1(或-1),自相关程度越高1.2. 偏相关, PAC,Partial Correlation,对于时间序列 ,在给定 的条件下, 与 之间的条件相关关系 相关程度由偏自相关系数 度量,满足,1.3. Eviews中自(偏自)相关分析的操作,Quick/Series Statistics/Correlogram 第一项:对于按序列(Level),原序列的一次差分(1st difference),原序列的2次差分(2nd difference)做相关图 第二项:决定自相关函数的最大滞后期数,考察季节数据时,如月度数据,季节周期为12个月,k取12,24等;季度数据时,k取4,8等。

      显示了相关图、偏相关图、Q统计量及相应的频率在图的左部显示的是根据这些统计量的值绘出的图形,右边显示的是这些统计量的数值列表输出结果,Autocorrelation:自相关图 Partial Correlation:偏相关 自然序数列:滞后期k的值 AC:估计的自相关系数值 PAC:估计的偏相关系数值 Q-Stat:Q统计量,对序列进行独立性检验 原假设:序列是非自相关的 Prob:Q统计量取值大于该样本计算的Q值的概率,若以5%为检验水平,则该概率大于0.05时,该序列是非自相关的;小于0.05时,该序列是自相关的序列自相关系数: 相关图AC的定义: 滞后K期的偏自相关系数: 滞后K期的Ljung-Box-Q统计量:,,Q-Stat表示的是Q统计量值系列,Prob表示的是Q统计量取值大于该样本计算的Q值的概率 若以5%为检验水平,则该概率大于0.05时,该序列是非自相关的(随机的);小于0.05时,该序列是自相关的(非随机的)使用命令方式绘制序列的自相关和 偏自相关分析图,在主菜单窗口输入“ident_序列名称”,以后的操作与菜单方式完全相同 或在主窗口命令行只输入“ident”,以后的操作与菜单方式完全相同,操作练习1,打开工作文件“上证综指” 使用菜单方式绘制序列“CLSINDEX”的相关图,将结果固化,命名为“Table01”、 “Table02” 。

      要求:分别使用原序列和一阶差分序列,最大滞后阶数为30 使用命令方式绘制序列“RETINDEX”的相关图,将结果固化,命名为“Table03”要求:使用原序列,最大滞后阶数为302. 时间序列特性分析,时序的随机性 时序的平稳性 时序的季节性,相关图及偏相关图的分析,如果几乎所有自相关系数都落入随机区间,可认为序列是随机的随机序列自相关图 如果 (AC)较大,则意味着这个序列存在自相关 如果 随着滞后期k的增加或多或少地呈几何状递减,则标志着这一序列服从一个低阶自回归过程非平稳序列)非平稳序列自相关图 如果k的值增加不大, 的值就降到接近于0,则标志着这一序列服从一个低阶移动平均过程平稳序列)平稳序列自相关图,2. 1. 时序的随机性,如果一个时间序列是纯随机序列,意味着序列没有任何规律性,序列诸项之间不相关,即序列为白噪声序列,其自相关系数应该与0没有显著差异 判断一个时间序列是否是纯随机序列最直观的方法是利用自相关分析图 自相关分析图中给出了显著水平0.05时的置信带,自相关系数落入置信区间内表示与0无显著差异如果几乎所有自相关系数都落入随机区间,可认为序列是纯随机的。

      如:“上证综指收益指数”,2.2. 时序的平稳性,平稳时间序列的各观测值围绕其均值上下波动,且该均值与时间t无关,振幅变化不剧烈平稳序列折线图 序列的平稳性可以用自相关分析图判断:如果序列的自相关系数很快地(滞后阶数k大于2或3时)趋于0,即落入随机区间,时序是平稳的,反之非平稳 常见的时间序列多具有某种趋势,但很多序列通过差分可以平稳如果原序列非平稳,经过d阶逐期差分后平稳判断时间序列的趋势是否消除,只需要考察经过d阶差分后序列的自相关分析图,自相关系数是否具有平稳序列的性质,即很快趋于0 差分方法的缺点:虽然能消除某些序列的趋势而易于建模,但同时也消除了原序列的长期特征,会丢失某些信息因此,实际的经济时间序列差分阶数d一般不超过2总结,纯随机序列的自相关:多用于模型残差,以评价模型的优劣 平稳序列的自相关:ARMA模型 非平稳序列的自相关,操作练习2,打开工作文件“中国居民总量消费支出与收入” 绘制序列“GDP”的相关图,对其时间序列特性进行分析最大滞后阶数为12 如何得到序列“GDP”的平稳序列?,知识点回顾,请打开工作文件“家庭收入与支出” 请说明序列“CS”的时序列特性 如何得到一个稳定的CS序列?,2.3. 时序的季节性,时间序列的季节性是指在某一固定的时间间隔上,序列重复出现某种特性,如地区降雨量、旅游收入和空调销售额等。

      判断时间序列季节性的标准: 月度数据:考察k=12,24,36,… 时的自相关系数是否与0有显著差异 季度数据:考察k=4,8,12,… 时的自相关系数是否与0有显著差异 若自相关系数与0无显著不同,说明各年中同一月(季)不相关,序列不存在季节性;反之,则存在季节性季节性调整例:“民航客运量”,序列X的折线图:总体上升趋势 相关图(原序列,最大滞后期24):自相关系数没有很快趋于0,说明序列是非平稳序列 差分:生成序列dx,满足dx=x-x(-1) 绘制序列“dx”的相关图:季节性 季节差分消除序列季节性,差分步长应与季节周期一致生成序列ddx,满足ddx=dx-dx(-12) 绘制序列ddx的自相关图:季节性基本消除操作练习3,打开工作文件“某地区气温和绝对湿度月平均值” 检验并消除序列H的季节性3. 单位根检验,单位根检验(Unit Root Test)主要用来判定时间序列的平稳性 如果一个时间序列的均值或者协方差函数随时间变化而改变,那么这个序列就是不平稳的时间序列如果该时间序列经过一阶差分后变为平稳序列,则称该序列为一阶单整序列,记作I(1);如果是经过d次差分后才平稳,则称为d阶单整序列,记作I(d)。

      单位根检验(Unit Root Test)主要用来判定时间序列的平稳性 如果一个时间序列的均值或者协方差函数随时间变化而改变,那么这个序列就是不平稳的时间序列 如果该时间序列经过一阶差分后变为平稳序列,则称该序列为一阶单整序列,记作I(1);如果是经过d次差分后才平稳,则称为d阶单整序列,记作I(d)其中d表示单整阶数,是序列包含的单位根个数 自相关分析图可以判断时间序列的平稳性,这种方法比较粗略,单位根检验是检验时序平稳性的一种正式的方法选择工具栏中的“View”|“Unit Root Test”选项,会弹出如下图所示的对话框EViews6.0为用户提供了6种单位根检验的方法,有 “Augmented Dickey–Fuller”(ADF)检验法, “Dickey–Fuller GLS (ERS)”(DF)检验法, “Phillips–Perron”(PP)检验法, “Kwiatkowski–Phillips–Schmidt–Shin”(KPSS)检验法, “Elliott–Rothenberg–Stock Point–Optimal”(ERS)检验法, “Ng–Perron”(NP)检验法。

      26,其中 a 是常数, t 是线性趋势函数,ut ~ i.i.d. N (0,  2) 1. DF检验 为说明DF检验的使用,先考虑3种形式的回归模型,27,(1) 如果 -1  1,则 yt 平稳(或趋势平稳) (2) 如果 =1,yt 序列是非平稳序列5.3.4)式可写成: 显然 yt 的差分序列是平稳的 (3) 如果  的绝对值大于1,序列发散,且其差分序列是非平稳的28,因此,判断一个序列是否平稳,可以通过检验  是否严格小于1来实现也就是说: 原假设H0: =1,备选假设H1: 1,从方程两边同时减去 yt-1 得,,其中: = -129,其中: = -1,所以原假设和备选假设可以改写为 可以通过最小二乘法得到 的估计值,并对其进行显著性检验的方法,构造检验显著性水平的 t 统计量 但是,Dickey-Fuller研究了这个t 统计量在原假设下已经不再服从 t 分布,它依赖于回归的形式(是否引进了常数项和趋势项) 和样本长度T 30,Mackinnon进行了大规模的模拟,给出了不同回归模型、不同样本数以及不同显著性水平下的临界值这样,就可以根据需要,选择适当的显著性水平,通过 t 统计量来决定是否接受或拒绝原假设。

      这一检验被称为Dickey-Fuller检验(DF检验) 上面描述的单位根检验只有当序列为AR(1)时才有效如果序列存在高阶滞后相关,这就违背了扰动项是独立同分布的假设在这种情况下,可以使用增广的DF检验方法(augmented Dickey-Fuller test )来检验含有高阶序列相关的序列的单位根DF检验: AR(1)过程: 实际检验时: ,其中 原假设: 包含常数项: 包含常数项以及线性时间趋势:,单位根检验的对话框,检验类型:六项 对检验序列的选择(Test for unit root in):原序列不差分,一阶差分,二阶差分 对序列趋势类型的选择(Include in test equation):常数项和趋势项 滞后阶数的选择(Lag length):检验类型(Automatic selection),ADF检验方程式中的滞后期(Maximum Lags)K,若仅考虑存在一阶相关,其值为0.,在“Test for unit root in”中选择序列形式 “Level”表示对原序列进行单位根检验, “1st difference”表示对一阶差分序列进行单位根检验, “2nd difference”表示对二阶差分序列进行单位根检验。

      Lag length”表示消除序列相关所需的滞后阶数,在该区域有两个选项按钮 在“Automatic selection”(自动选择)中有两个文本框,第一个文本框的下拉列表中有6个准则,常用的是“AIC”和“SC”最小准则,系统在默认状态下显示的是SC准则; 第二个文本框中输入最大滞后阶数,一般系统会根据样本容量而自动给出一个数值代表ADF检验方程式中的滞后期p若仅考虑存在一阶自相关,将其值改为0. 如果选中“User specific”,则用户可输入具体的数值,系统会给出检验结果Include in test equation”表示检验式中是否包含“Intercept”(截距项)、“Trend and intercept”(趋势项和截距项)和“None”(不包含趋势项和截距项)可根据图形来确定是否包含趋势项和截距项DF检验的输出结果,输出结果:检验统计量的计算值,在1%,5%,10%的显著性水平下的临界值 在有单位根的零假设下,输出的DF统计量并不服从标准的t分布,必须从参考在检验结果中给出的临界值 结果分析:统计量的计算值(DF值)大于单位根检验临界值,结论是不能拒绝原假设,序列存在单位根,是非平稳的。

      进一步分析:辅助方程式的估计和检验结果, GLSRESID(-1)为变量滞后一期的系数 AIC和SC准则是评价检验效果的有效手段,如果两个值相对较大,表明对序列采用DF检验并不合适,要试用ADF检验38,2. ADF检验 。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.