
人教八年级数学下册第十六章试卷(1)带答案.docx
18页人教八年级数学下第十六章卷(1)一、选择题1.如果有意义,那么x的取值范围是( )A.x>1 B.x≥1 C.x≤1 D.x<12. 的相反数是( )A.﹣ B. C.﹣ D.3.下列根式中属最简二次根式的是( )A. B. C. D.4.下列计算错误的是( )A. B. C. D.5.下列二次根式中与的被开方数相同的是( )A. B. C. D.6.若是整数,则正整数n的最小值是( )A.2 B.3 C.4 D.57.设,a在两个相邻整数之间,则这两个整数是( )A.1和2 B.2和3 C.3和4 D.4和58.已知a<b,则化简二次根式的正确结果是( )A. B. C. D.9.若x=﹣3,则等于( )A.﹣1 B.1 C.3 D.﹣310.已知,则的值为( )A. B.8 C. D.6二、填空题11.已知a=,则代数式a2﹣1的值为 .12.若,则m﹣n的值为 .13.计算:= .14.比较大小:﹣3 ﹣2.15.如果最简二次根式与的被开方数相同,那么a= .16. 与的关系是 .17.观察下列各式:①;②=3;③,…请用含n(n≥1)的式子写出你猜想的规律: .三、解答题18.计算:(1);(2);(3);(4).19.当x=﹣1时,求代数式x2+2x+2的值.20.先化简,再求值:(﹣),其中x=2.21.解方程组,并求的值.22.若实数x,y满足y=++2,求的值.23.阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.(3)计算:.答案1.如果有意义,那么x的取值范围是( )A.x>1 B.x≥1 C.x≤1 D.x<1【考点】二次根式有意义的条件.【专题】选择题.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:由题意得:x﹣1≥0,解得:x≥1.故选B.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.2. 的相反数是( )A.﹣ B. C.﹣ D.【考点】二次根式的定义及识别条件.【专题】选择题.【分析】由于互为相反数的两个数和为0,由此即可求解.【解答】解:∵+(﹣)=0,∴的相反数是﹣.故选A.【点评】此题主要考查了求无理数的相反数,无理数的相反数和有理数的相反数的意义相同,无理数的相反数是各地中考的重要考点.3.下列根式中属最简二次根式的是( )A. B. C. D.【考点】最简二次根式.【专题】选择题.【分析】根据最简二次根式的定义对各选项分析判断后利用排除法求解.【解答】解:A、无法化简,故本选项正确;B、=,故本选项错误;C、=2故本选项错误;D、=,故本选项错误.故选A.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.4.下列计算错误的是( )A. B. C. D.【考点】二次根式的混合运算.【专题】选择题.【分析】结合选项分别进行二次根式的除法运算、乘法运算、加减运算,然后选择正确选项.【解答】解:A、=7,原式计算正确,故本选项错误;B、=,原式计算正确,故本选项错误;C、+=8,原式计算正确,故本选项错误;D、3﹣=2,原式计算错误,故本选项错误.故选D.【点评】本题考查了二次根式的混合运算,解答本题的关键是掌握二次根式的加减法则和乘除法则.5.下列二次根式中与的被开方数相同的是( )A. B. C. D.【考点】被开方数相同的最简二次根式.【专题】选择题.【分析】根据被开方数相同的最简二次根式的定义,先化简,再判断.【解答】解:A、=2,与的被开方数不同,不是同类二次根式,故A选项错误;B、=,与的被开方数不同,不是同类二次根式,故B选项错误;C、=,与的被开方数不同,不是同类二次根式,故C选项错误;D、=3,与的被开方数相同,是同类二次根式,故D选项正确.故选D.【点评】此题主要考查了被开方数相同的最简二次根式的定义,即:化成最简二次根式后,被开方数相同,这样的二次根式叫做被开方数相同的最简二次根式.6.若是整数,则正整数n的最小值是( )A.2 B.3 C.4 D.5【考点】二次根式的定义.【专题】选择题.【分析】先把75分解,然后根据二次根式的性质解答.【解答】解:∵75=253,∴是整数的正整数n的最小值是3.故选B.【点评】本题考查了二次根式的定义,把75分解成平方数与另一个因数相乘的形式是解题的关键.7.设,a在两个相邻整数之间,则这两个整数是( )A.1和2 B.2和3 C.3和4 D.4和5【考点】二次根式的加减.【专题】选择题.【分析】先对进行估算,再确定是在哪两个相邻的整数之间,然后计算介于哪两个相邻的整数之间.【解答】解:∵16<19<25,∴4<<5,∴3<﹣1<4,∴3<a<4,∴a在两个相邻整数3和4之间;故选C.【点评】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.8.已知a<b,则化简二次根式的正确结果是( )A. B. C. D.【考点】二次根式的性质与化简.【专题】选择题.【分析】由于二次根式的被开方数是非负数,那么﹣a3b≥0,通过观察可知ab必须异号,而a<b,易确定ab的取值范围,也就易求二次根式的值.【解答】解:∵有意义,∴﹣a3b≥0,∴a3b≤0,又∵a<b,∴a<0,b≥0,∴=﹣a.故选A.【点评】本题考查了二次根式的化简与性质.二次根式的被开方数必须是非负数,从而必须保证开方出来的数也需要是非负数.9.若x=﹣3,则等于( )A.﹣1 B.1 C.3 D.﹣3【考点】二次根式的化简求值.【专题】选择题.【分析】x=﹣3时,1+x<0,=﹣1﹣x,再去绝对值.【解答】解:当x=﹣3时,1+x<0,=|1﹣(﹣1﹣x)|=|2+x|=﹣2﹣x=1.故选B.【点评】本题考查了二次根式的化简方法,关键是根据x的取值,判断算式的符号.10.已知,则的值为( )A. B.8 C. D.6【考点】二次根式的乘法.【专题】选择题.【分析】首先求出(a+)2=a2++2=10,进而得出(a﹣)2=6,即可得出答案.【解答】解:∵,∴(a+)2=a2++2=10,∴a2+=8,∴a2+﹣2=(a﹣)2=6,∴=.故选C.【点评】此题主要考查了完全平方公式的应用,根据已知得出a2+的值是解题关键.11.已知a=,则代数式a2﹣1的值为 .【考点】二次根式的乘法.【专题】填空题.【分析】把a=代入a2﹣1直接计算即可.【解答】解:当a=时,a2﹣1=()2﹣1=1.故本题答案为:1.【点评】本题考查实数的运算和代数式的求值,主要考查运算能力.12.若,则m﹣n的值为 .【考点】二次根式的性质.【专题】填空题.【分析】根据任何非负数的平方根以及偶次方都是非负数,两个非负数的和等于0,则这两个非负数一定都是0,即可得到关于m.n的方程,从而求得m,n的值,进而求解.【解答】解:根据题意得:,解得:.则m﹣n=3=(﹣1)=4.故答案是:4.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.计算:= .【考点】:二次根式的加减法.【专题】填空题.【分析】本题是二次根式的减法运算,二次根式的加减运算法则是合并同类二次根式.【解答】解:=5﹣2=3.【点评】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.14.比较大小:﹣3 ﹣2.【考点】二次根式的乘法.【专题】填空题.【分析】先把两数平方,再根据实数比较大小的方法即可比较大小.【解答】解:∵(3)2=18,(2)2=12,∴﹣3<﹣2.故答案为:<.【点评】此题主要考查了实数的大小的比较,实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.15.如果最简二次根式与的被开方数相同,那么a= .【考点】被开方数相同的最简二次根式.【专题】填空题.【分析】根据被开方数相同的最简二次根式的定义建立关于a的方程,求出a的值.【解答】解:∵最简二次根式与的被开方数相同,∴1+a=4a﹣2,解得a=1.故答案为1.【点评】本题考查了被开方数相同的最简二次根式的定义.16. 与的关系是 .【考点】二次根式的乘法.【专题】填空题.【分析】把分母有理化,即分子、分母都乘以,化简再比较与的关系.【解答】解:∵=,∴的关系是相等.【点评】正确理解分母有理化的概念是解决本题的关键.17.观察下列各式:①;②=3;③,…请用含n(n≥1)的式子写出你猜想的规律: .【考点】二次根式的乘除法.【专题】填空题.【分析】从给出的三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,依此可以找出规律.【解答】解:从①②③三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,即=(n+1).【点评】做这类题的关键是仔细观察各式从中找出规律.18.计算:(1);(2);(3);(4).【考点】二次根式的混合运算.【专题】解答题.【分析】(1)先把各二次根式化为最简二次根式,然后去括号后合并同类二次根式;(2)根据二次根式的乘除法则运算;(3)利用平方差公式计算;(4)先把括号内的各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算.【解答】解:(1)原式=2﹣﹣2﹣=﹣3;(2)原式=2=;(3)原式=(2)2﹣()2=12﹣6=6;(4)原式=(8﹣9)=﹣=﹣=﹣.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.19.当x=﹣1时,求代数式x2+2x+2的值.【考点】二次根式的乘法.【专题】解答题.【分析】将代数式进行适当的变形后,将x的值代入.【解答】解:原式=x2+2x+1+1=(x+1)2+1,当x=﹣1时,原式=()2+1=3【点评】本题考查二次根式运算,涉及因式分解,代数式求值问题,属于基础问题.20.先化简,再求值:(﹣),其中x=2.【考点】代数式.【专题】解答题.【分析】按照分式的性质进行化简后代入x=2求值即可.【解答】解:原式=•=当x=2时,原式=.【点评】本题考查了分式的化简求值的知识,解题的关键是能够对分式进行正确的化简,难度不大.21.解方程组,并求的值.【。












