好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

面包问题数学模型.doc

10页
  • 卖家[上传人]:mg****85
  • 文档编号:34105424
  • 上传时间:2018-02-20
  • 文档格式:DOC
  • 文档大小:268.36KB
  • / 10 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 面包店问题 摘 要:烤箱烘烤面包问题是生活中常见的问题,也是比较典型的数学模型本文解决的是烤箱烘烤面包所用时间要尽可能短的问题现面包所需烘烤时间长短不一、烤箱容量又有限,而需在保证面包质量的情况下使烘烤完所有面包用的时间最短为解决此问题,我们建立了线性规划模型针对问题一,我们先对所给数据进行初步分析,由此我们采取线性规划进行最优化处理,由于面包种类繁多,不宜人工进行简单组合,所以我们运用matlab 软件建立数学模型,进行优化计算得出最优组合当有二台烘烤箱同时工作时,我们对只有一台烘烤箱所得结果作处理之后,同样采取线性规划思想进行分析求解,应用 matlab 处理软件优化处理之后得出每台烤箱的工作分配情况在此,我们建立了两个最优化模型,一为同一烤箱烘烤同种面包二为混合烘烤,即同一烤箱中同时烘烤多种面包,则烘烤时间以最后烘烤完成的面包时间计算根据这两个模型设计出一个最优烘烤方案,并得出了烤箱工作的时间评价方案性能的优劣指标为烤箱工作的时间的长短在考虑烤箱工作的时间的短的基础上,我们根据现有的条件算出各样式的面包的利润,算出总的利润针对问题二,在不考虑产品需求预测估计值的误差,也不考虑产品各项成本费用在此阶段时间的变化的前提下,时间和产量分别处理。

      在问题一的基础上增加零售产量、零售量、零售单价(元)等变量,重新根据现有的条件算出各样式的面包的利润,算出总的利润关键词: matlab 软件 工作时间 线性规划 0一、问题重述某个面包店有两个烤箱,每个烤箱有数个烤盘该店可以烤制数十种样式的面包不同种类的面包的烤制时间不一样,但可以在同一个烤箱中烤制当天烤制的面包只能当天销售,过期销毁 (1) 如果该面包店只为某些宾馆服务,宾馆每天分四批来取货,每次取货的面包样式及数量提前一天告知面包店,则面包店应该如何安排,才能使每天的收益最大? (2) 如果面包店同时还面向大众零售服务,则应该如何安排生产计划才能使预期的收益最大? 请为面包店建立模型安排每天的生产计划,并自己给出数据检验模型的效果说明你的数据产生的方式,评价模型的优缺点二、问题的背景及分析2.1问题的背景2.1.1问题一:本问题研究的是面包房烘烤面包最优效率问题每个面包烘烤所需时间以及他们所占用的烤箱容量不尽相同,如果随机组合烘烤,不但不能提高烤箱利用率反而会降低总效率而且浪费很多资源,也有可能把面包烤坏如何设计一个烘烤方案组合,充分利用烤箱容量,使得烤箱的工作时间尽可能短。

      根据所给数据,面包种类繁多,不宜人工进行简单组合,所以我们采用线性规划思想,运用 matlab 软件建立数学模型,进行优化计算得出最优组合2.1.2问题二:根据市场分析,目前消费市场竞争日趋激烈,面包店的整体布局也应该随着由于每一天市场的不稳定性以及一些问题的不确定性,我们对求解的模型作一些合理化的假设:1、不考虑产品需求预测估计值的误差,也不考虑产品各项成本费用在此阶段时间的变化2、为方便起见,时间和产量都分别处理固定的认为该天该产品的数量3、面包的种类要配合地点和顾客阶层,才会有理想的销售量代替点人的甜面包、填饱肚子的调理面包、吐司之类的主食面包等等,会因位于商业区、办公区或住宅区而有不同的销路另外,供应薪水阶级、职业妇女或孩子的面包种类也有不同4、面包的市场需求量与时间成如下正态分布曲线图:12.2 问题总体分析2.2.1问题一:这个优化问题的目标就是要使面包店的收益最大,要做的决策就是生产计划,而宾馆所需面包的样式和总类已经提前知道,所以只需考虑面包烘烤的时间,建立模型从而求出的时间最小值,即为利润最高的最优解2.2.2问题二:本问题考虑到了面包烘烤前还需要一定的准备时间(制作,发酵) ,这样就使得问题变得更加的复杂和多元化,模型的建立将受到多重因素的制约。

      据此,我们采用层次分析法,我们将此问题分为了三个阶段来解决,首先,面包只准备不烘烤阶段;然后,边准备边烘烤阶段;最后,所有面包都已准备好即进入了只烘烤阶段对三个阶段逐一分析,最终求出最优化模型,得出最优组合3、模型假设1、假设两个烤箱的规格是一样的,有相同的烤盘数(烤盘规格也一样) 2、假设所需温度和所需条件相同时,烤箱预热时间忽略不计3、在保证每次烘烤拿出、放入面包的次数少的前提下,其时间可忽略不计4、假设每个烤盘所能烤的面包数量是一样的5、面包准备好以后,停放时间不影响其烘烤时间6、烤箱的烘烤效率不随时间变化,烤箱的烘烤效率与面包所占烤箱容量无关7、对于问题二,不考虑节假日等特殊情况4、符号说明2n: 每个烤箱烤盘数量m: 该店可以烤制的面包样式总数(m>=10).Ai: 各种样式的面包数量 i=1,2,3,…,mtj: 各种样式的面包烤制所需的时间 j=1,2,3,…,mAi: 第一、二、三、四批宾馆所需面包数量 f=1,2,3,4Te: 第一、二、三、四批面包烤制所需的时间 e=1,2,3,4ni: 宾馆每批面包面包中 A1,A2,…,Am 各样式所需的数量 i=1,2,3,…,mQk: 各种样式的面包成本 k=1,2,3,…,mCg: 各种样式的面包销售后的不同利润 g=1,2,3,…,mBq: 零售服务时,各种样式的面包各户所需的数量。

      q=1,2,3,…,mw: 每个烤盘所能容纳的面包数量X:每个烤箱一次可以烘烤的面包数量:x=nwS:当天除面包成本外,其他费用总和(如:水电费、职工工资、房租等) 五、模型的建立与求解5.1生产优化模型的建立5.1.1生产模型一(同一烤箱烘烤同种面包)假设总利润最大时,第一批面包生产所需时间(当烘烤时间最小时,收益最大) .1212.334124aaAmaa+n1/2/2+t1bnTtwt…m…n/2w1同理,第二、三、四批时间计算一样,时间分别为 T2,T3,T4;面包样式 烘烤时间(分钟)所需的数量 成本(元/个)利润(元/个) 所需数量(/个)A1 t1 n1 Q1 C1 B1A2 t2 n2 Q2 C2 B2A3 t3 N3 Q3 C3 B3… … … … … …Am tm nm Qm Cm Bm3112//2+t23334//t44Ttnwtntt…n/wm/因此烘烤宾馆胡四批面包花费总时间为 4i=1T+23T *nwmjtnijMin T=T1+T2+T3+T4s.t1121 122 231323 3444 4t// /t// /0,,., mmjTnwtntnwwt tTnnntjm LL利用 matlab 程序如下:f = [1;1;1;1];Aeq=[ ... ;/2nw12/n1/2mnw... 1... 3/32/3/m... ];41nw4n42nwBeq=[T1 T2 T3 T4];vlb=zeros(m,1);vub=[];[x,fval] = linprog(f,A,b,[],[],vlb,vub)5.1.2生产模型二(混合烘烤,即同一烤箱中同时烘烤多种面包,则烘烤时间以最后烘烤完成的面包时间计算)当需要比较短时间烤制的烤熟时,再次放进去烤的面包烤制时间比之前所需烤制时间最大的要小,并且一次可以全部烤完每一批所需的该种类面包。

      4第一批面包生产所需时间: (1<=i<=m)(第一批面包中烤制时间最长的)iT(1)=t第二批面包生产所需时间:(1<=j<=m)第二批面包中烤制时间最长的)(2)jt第三批面包生产所需时间:(1<=p<=m)(第三批面包中烤制时间最长的)(3)Ttp第四批面包生产所需时间:(1<=q<=m)(第四批面包中烤制时间最长的)q(4)=t因此烘烤宾馆胡四批面包花费总时间为 'T(1)+2T(3)4 =ttijpq本题是一个在最小的时间里达到最大的利润的问题,由题目可以看出,利润最大化是我们的目的,数学模型如下: Max 1miCSs.t.122.3341240,,1,.ijaaAmaajs.t112233mmCHYSQYSM这里我们可以根据上面的公式求解根据分析,我们可以选择求利润最大化的思路求解5.1.3模型比较生产模型一与生产模型二原料生产成本是一样的,只需比较 T 与 T’时间的长短即可,时间长的生产模型消耗的成本更高,故时间较短的为较优模型问题一:5由上表所设可求出每种样式的面包的利润 C1,C2,C3,…,Cm,以及总利润 C1、每种样式利润112233mmCHYSQYSM2、总利润即123CCSL3123( )m mHYHYQSSQL问题二:由上表所设可求出每种样式的面包的利润 C1,C2,C3,…,Cm,以及总利润 C1、每种样式利润样式 日生产量 日销售量 单价(元) 成本(个/元)利润(个/元)A1 S1 H1 Y1 Q1 C1A2 S2 H2 Y2 Q2 C2A3 S3 H3 Y3 Q3 C3 … … … … … …Am Sm Hm Ym Qm Cm样式 宾馆产量零售产量宾馆售量零售量 宾馆单价(元)零售单价(元)成本(个/元)利润(个/元)A1 S1 R1 H1 P1 Y1 L1 Q1 C1A2 S2 R2 H2 P2 Y2 L2 Q2 C2A3 S3 R3 H3 P3 Y3 L3 Q3 C3 … … … … … … … … …Am Sm Rm Hm Pm Ym Lm Qm Cm6111122223333()()()mmmCHYSQPLRYSPLRM2、总利润即123axmCCS( )123( )(++)123132HYYHSQSQmPLLPRRLLL6、模型的检验数学模型一般是实际事物的一种数学简化。

      它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学使用数学语言描述的事物就称为数学模型有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行的相应的实验,实验本身也是实际操作的一种理论替代数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的数学的特点不仅在于概念的抽象性、逻辑的紧密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入 20 世纪以来,随着科学技术的迅猛发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入 21 世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从经济和科技的后备走到了前沿经济发展的全球化、计算机的迅猛发展,数学理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。

      培养学生应用数学的意识和能力已经成为数学教学的一个重要组成部分本论文采用了线性规划的方式将实际生活中的问题转化为数学模型,模型的建立具有一定的实用价值,但是此论文中考虑的因素相对于实际而言较少,因此,模型的说服力有待考证对于模型一:论文中考虑了两种情况,方式一两个烤箱中可以烤同种面包,这种方式可以减少频繁拿出面包所消耗的时间,但是这样会面临其它的问题,比如说可能宾馆需要的面包种类比较多,这样烤制好满足需要的面包所需要等7待的时间将会被延长;方式二两个烤箱中可以烤制不同种类的面包,由于各种面包需要烤制的时间不一样,所以不可避免要频繁拿出烤好的面包,这样就会花费大量时间,但是它的优点也比较明确,可以尽量满足需要,不会出现供不应求的。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.