
蛋白质分选,膜泡运输2.ppt
36页第三节 细胞内蛋白质的分选与膜泡运输2021/9/241二、蛋白质分选的基本途径和类型翻译后转运的非分泌途径共翻译转运的蛋白质分泌途径2021/9/242二、蛋白质分选的基本途径和类型蛋白质的转运类型:1. 跨膜转运(transmembrane transport):蛋白质通过跨膜通道进入目的地如细胞质中合成的蛋白质通过线粒体上的转位因子(translocator)进入线粒体2. 膜泡运输(vesicular transport):被运输的物质在内质网或高尔基体中加工成衣被小泡,选择性地运输到靶细胞器3. 选择性的门控转运(gated transport):如通过核孔复合体的运输(输入或输出)4. 细胞质基质中的蛋白质转运:与细胞骨架系统密切相关2021/9/2432021/9/2442021/9/245两类蛋白质分选信号每一种信号序列决定特殊的蛋白质转运方向,如输入内质网的蛋白质通常N端具有一段信号序列,含有6-15个带正电荷的非极性氨基酸目前对于信号斑了解较少,主要是因为它存在于复杂的三维结构中,很难将其分离出来研究2021/9/246一、信号假说与蛋白质分选信号信号假说: 分泌性蛋白N端序列作为信号肽,指导分泌性蛋白到内质网上合成,然后在信号肽指导下蛋白质边合成边通过易位子蛋白复合体进入内质网腔,在蛋白质合成结束之前信号肽被切除。
2021/9/247膜泡运输(vesicular transport)• 细胞内部内膜系统各个部分之间的物质传递常常通过膜泡运输方式进行如从内质网到高尔基体;高尔基体到溶酶体;细胞分泌物的外排,都要通过过渡性小泡进行转运• 膜泡运输是一种高度有组织的定向运输,各类运输泡之所能够被准确地运到靶细胞器,主要是因为细胞器的胞质面具有特殊的膜标志蛋白• 许多膜标志蛋白存在于不止一种细胞器,不同的膜标志蛋白组合,决定膜的表面识别特征2021/9/248三类有被小泡及其功能2021/9/249电镜下的衣被小泡2021/9/24101. COP II 有被小泡有被小泡 介导从内质网到高尔基体的物质运输 COP II衣被由5种蛋白质亚基构成: Sec13, Sec31, Sec23, Sec24和Sar1(GTP酶)三类有被小泡及其功能2021/9/2411COPII衣被小泡的组装2021/9/2412COPII衣被小泡的组装2021/9/24132、COP I 衣被小泡衣被小泡• 负责回收、转运内质网逃逸蛋白(escaped proteins)返回内质网• 内质网向高尔基体输送运输小泡时,一部分自身的蛋白质也不可避免的被运送到了高尔基体。
• 内质网通过两种机制维持蛋白质的平衡 :一是转运泡将应被保留的驻留蛋白排斥在外,例如有些驻留蛋白参与形成大的复合物,因而不能被包装在出芽形成的转运泡中,结果被保留下来;二是通过对逃逸蛋白的回收机制,使之返回它们正常驻留的部位三类有被小泡及其功能2021/9/2414内质网的正常驻留蛋白,不管在腔中还是在膜上,它们在C端含有一段回收信号序列(retrieval signals),如果它们被意外地逃逸进入转运泡从内质网运至高尔基体cis面,则cis面的膜结合受体蛋白将识别并结合逃逸蛋白的回收信号,形成COP I衣被小泡将它们返回内质网内质网腔中的蛋白,如蛋白二硫键异构酶和协助折叠的分子伴侣,均具有典型的回收信号Lys-Asp-Glu-Leu(KDEL)内质网的膜蛋白(如SRP受体)在C端有一个不同的回收信号,通常是Lys-Lys-X-X(KKXX,X:任意氨基酸),同样可保证它们的回收内质网驻留蛋白通过COP I衣被小泡的回收2021/9/2415内质网驻留蛋白回收示意图2021/9/24163. 网格蛋白衣被小泡网格蛋白衣被小泡网格蛋白衣被小泡是最早发现的衣被小泡,介导高尔基体的TGN到质膜、胞内体、溶酶体、植物液泡的运输;同时,在受体介导的胞吞途径中负责物质从质膜运往细胞质,以及从胞内体到溶酶体的运输。
网格蛋白分子由3个重链和3个轻链组成,形成一个具有3个曲臂的形状(triskelion)许多笼形蛋白的曲臂部分交织在一起,形成一个具有5边形网孔的笼子三类有被小泡及其功能2021/9/2417网格蛋白衣被小泡(电镜照片,分子模型,衣被模型)2021/9/2418网格蛋白衣被小泡的组成2021/9/2419三类有被小泡及其功能2021/9/2420• 胞内膜泡运输沿微管或微丝运行,动力来自马达蛋白(motor proteins)在马达蛋白的作用下,可将膜泡转运到特定的区域,马达蛋白水解ATP提供运输的动力• 与膜泡运输有关的马达蛋白有3类:一类是动力蛋白(dynein), 可向微管负极移动;另一类为驱动蛋白(kinesin),可牵引物质向微管的正极移动;第三类是肌球蛋白(myosin), 可向微丝的正极运动与膜泡运输有关的马达蛋白2021/9/2421各类运输小泡之所以能够被准确地和靶膜融合,是因为运输小泡表面的标志蛋白能被靶膜上的受体识别,其中涉及识别过程的两类关键性的蛋白质是SNAREs(soluble NSF attachment protein receptor)和Rabs(targeting GTPase)。
其中:SNARE介导运输小泡特异性停泊和融合,Rab的作用是使运输小泡靠近靶膜膜泡运输的定向机制2021/9/2422SNAREs的作用是保证识别的特异性和介导运输小泡与目标膜的融合动物细胞中已发现20多种SNAREs,分别分布于特定的膜上位于运输小泡上的叫作v-SNAREs,位于靶膜上的叫作t-SNAREsv-SNAREs和 t-SNAREs都具有一个螺旋结构域,能相互缠绕形成跨SNAREs复合体(trans-SNAREs complexes),并通过这个结构将运输小泡的膜与靶膜拉在一起,实现运输小泡特异性停泊和融合膜泡运输的定向机制: SNAREs2021/9/2423SNAREs in vesicle transport2021/9/2424跨SNAREs复合体2021/9/2425在SNAREs接到新一轮的运输小泡停泊之前,SNAREs必须以分离的状态存在,NSF(N-ethylmaleimide-sensitive factor, NSF)催化 SNAREs的分离,它是一种类似分子伴娘的ATP酶,能够利用ATP作为能量通过插入几个适配蛋白(adaptor protein)将SNAREs复合体的螺旋缠绕分开,以便开始下一轮的转运。
膜泡运输的定向机制: 跨SNAREs复合体的解离2021/9/2426•Rabs也叫targeting GTPase,属于单体GTP酶,已知30余种,不同膜上具有不同的Rabs•Rabs作用是促进和调节运输小泡的停泊和融合•Rabs起分子开关作用,结合GDP失活,位于细胞质中; 结合GTP激活,位于细胞膜、内膜和运输小泡膜上,调节SNAREs复合体的形成Rabs还有许多效应因子(effector) 膜泡运输的定向机制: Rabs2021/9/2427Rabs的作用2021/9/2428The Nobel Prize in Physiology or Medicine 1999"for the discovery that proteins have intrinsic signals that govern their transport and localization in the cell"Günter BlobelUSARockefeller University New York, NY, USA; Howard Hughes Medical Institute b. 1936(in Waltersdorf/Silesia, Germany)2021/9/2429细胞内合成的蛋白质之所以能够定向的转运到特定的细胞器取决于两个方面:其一是蛋白质中包含特殊的信号序列(signal sequence or targeting sequence ),其二是细胞器上具特定的信号识别装置(分选受体,sorting receptor)。
信号肽-信号识别颗粒-颗粒受体一、信号假说与蛋白质分选信号2021/9/2430分泌性蛋白质的合成与其跨内质网膜的共翻译转运SRP (signal recognition particle): 信号识别颗粒;SRP receptor/Docking protein (DP): 信号识别颗粒受体/停泊蛋白2021/9/2431Figure 12-47. How a single-pass transmembrane protein with a cleaved ER signal sequence is integrated into the ER membrane. In this hypothetical protein the co-translational translocation process is initiated by an N-terminal ER signal sequence (red) that functions as a start-transfer signal. In addition to this start-transfer sequence, however, the protein also contains a stop-transfer sequence (orange). When the stop-transfer sequence enters the translocator and interacts with a binding site, the translocator changes its conformation and discharges the protein laterally into the lipid bilayer. The three ways in which single-pass transmembrane proteins become inserted into the ERSignal sequence is located in N-terminal2021/9/2432Figure 12-48. Integration of a single-pass membrane protein with an internal signal sequence into the ER membrane. In these hypothetical proteins, an internal ER signal sequence that functions as a start-transfer signal binds to the translocator in such a way that its more positively charged end remains in the cytosol. (A) If there are more positively charged amino acids immediately preceding the hydrophobic core of the start-transfer sequence than there are following it, the start-transfer sequence is inserted into the translocator in the orientation shown here. The part of the protein C-terminal to the start-transfer sequence will therefore be passed across the membrane. (B) If there are more positively charged amino acids immediately following the hydrophobic core of the start-transfer sequence than there are preceding it, the start-transfer sequence is inserted into the translocator in the orientation shown here. The part of the protein N-terminal to the start-transfer sequence will therefore be passed across the membrane. Because translocation cannot start before a start-transfer sequence appears outside the ribosome, translocation of the N-terminal portion of the protein shown in (B) can occur only after this portion has been fully synthesized. The signal sequence is internal …2021/9/2433Figure 12-49. Integration of a double-pass membrane protein with an internal signal sequence into the ER membrane. In this hypothetical protein, an internal ER signal sequence acts as a start-transfer signal and initiates the transfer of the C-terminal part of the protein. At some point after a stop-transfer sequence has entered the translocator, the translocator discharges the sequence laterally into the membrane. Double-pass transmembrane proteins ….2021/9/2434Figure 12-50. The insertion of the multipass membrane protein rhodopsin into the ER membrane. Rhodopsin is the light-sensitive protein in rod photoreceptor cells in the mammalian retina. (A) A hydrophobicity plot identifies seven short hydrophobic regions in rhodopsin. (B) The most N-terminal region serves as a start-transfer sequence that causes the preceding N-terminal portion of the protein to be passed across the ER membrane. Subsequent hydrophobic sequences function in alternation as start-transfer and stop-transfer sequences. (C) The final integrated rhodopsin has its N-terminus located in the ER lumen and its C-terminus located in the cytosol. The blue hexagons represent covalently attached oligosaccharides. Arrows indicate the parts of the protein that are inserted into the translocator. Multipass transmembrane proteins ….2021/9/2435THE END2021/9/2436。
