好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

平面向量复习课教案.doc

4页
  • 卖家[上传人]:ji****72
  • 文档编号:36292882
  • 上传时间:2018-03-27
  • 文档格式:DOC
  • 文档大小:326KB
  • / 4 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 平面向量复习课平面向量复习课 一.考试要求: 1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念 2、掌握向量的加法和减法 3、掌握实数与向量的积,理解两个向量共线的充要条件 4、了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向 量的坐标运算 5、掌握平面向量的数量积及其几何意义了解用平面向量的数量积可以处 理有关长度,角度和垂直的问题,掌握向量垂直的条件 二.知识梳理 1.向量的概念: 向量,零向量,单位向量,平行向量(共线向量),相等向量,向量的 模等 2.向量的基本运算 (1) 向量的加减运算 几何运算:向量的加减法按平行四边行法则或三角形法则进行 坐标运算:设 a a =(x1,y1), b b =(x2,y2)则 a a+b b=(x1+x2,y1+y2 ) a a-b b=(x1- x2,y1-y2) (2) 平面向量的数量积 :: a a b=b=cosab设 a a =(x1,y1), b b =(x2,y2)则 a a b=b=x1x2+y1y2(3)两个向量平行的充要条件 ∥ =λ 若 =(x1,y1), =(x2,y2),则 ∥ x1y2-x2y1=03.两个非零向量垂直的充要条件是 ⊥ · =0设 =(x1,y1), =(x2,y2),则 ⊥ x1x2+y1y2=0 三.教学过程 (一)基础知识训练1.1.下列命题正确的是 ( ) 单位向量都相等 任一向量与它的相反向量不相等 )(A)(B 平行向量不一定是共线向量 模为的向量与任意向量共线)(C)(D02.2. 已知正六边形中,若, ,则( )ABCDEFABaFAbBC)(A)(21ba )(B)(21ba )(Cba )(Dba 213.3. 已知向量,=2若向量与共线,则下列关, 01eR1eabe ,21eab 系一定成立是 ( ) ∥ ∥或)(A0)(B02e)(C1e2e)(D1e2e04. . 若向量,共线且方向相同,=__________。

      ), 1(xa)2 ,( xbx (二).典例分析 例 1:(1)设与为非零向量,下列命题:arbr①若与平行,则与向量的方向相同或相反;arbrarbr②若与共线,则 A、B、C、D 四点必在一条直线上;,, ABa CDbrrarbr③若与共线,则;④若与反向,则arbrababrrrrarbraab b r rr r其中正确命题的个数有 (A)1 个 (B)2 个 (C)3 个 (D)4 个 (2)下列结论正确的是 ( )(A) (B) (C)若a ba br rr rgababrrrr()()0a b cc a br r rr r rgg(D)若与都是非零向量,则的充要条件为arbrabrrababrrrr错解:(1)有学生认为①②③④全正确,答案为 4;也有学生认为①或④是 错的,答案为 2 或 3;(2)A 或 B 或 C 分析:学生对向量基础知识理解不正确、与实数有关性质运算相混淆, 致使选择错误。

      第(1)小题中,正确的应该是①④,答案为 2共线向量(与共线)arbr的充要条件中所存在的常数可看作为向量作伸缩变换成为另一个向量所brar作的伸缩量;若,为非零向量,则共线的与满足与同向时,arbrarbrarbrbaa brrr r与反向时arbrbaa b rrr r第(2)小题中,正确答案为(D)学生的错误多为与实数运算相混淆 所致选择支 D 同时要求学生明确向量垂直、两个向量的数量积、向量的模 之间互化方法,并进行正确互化 例例 2 2 设 a a、b b 是两个不共线向量AB=2a a+kb b BC=a a+b b CD=a a-2b b A、B、D 共线则 k=_____(k∈R) 解:BD=BC+CD=a a+b b+a a-2b b=2a a-b b2a a+kb b=λ(2a a-b b)=2λa a-λb b∴ 2=2λ 且 k=-λ∴ k=-1 例 3 梯形 ABCD,且|AB|=2|DC|,M、N 分别为 DC、AB 中点 AB=a a AD=b b 用 a a,,b b 来标 DC、BC、MN解:DC= AB=a a21 21BC=BD+DC=(AD-AB)+DC =b-ab-a+ a a=b b- a a21 21MN=DN-DM=a-ba-b-a a= a-ba-b21 41 41例 4 |a a|=10 b b=(3,-4)且 a a∥b b 求 a a 解:设 a a=(x,y)则 x2+y2=100 (1)由 a a∥b b 得 -4x-3y=0 (2)解(1)(2)得 x=6 y=-8 。

      或 x=-6 y=8 ∴ a a=(6,-8)或(-6,8) 四. 归纳小结 1.向量有代数与几何两种形式,要理解两者的内在联系,善于从图形 中发现向量间的关系 2.对于相等向量,平行向量,共线向量等概念要区分清楚,特别注意 零向量与任何向量共线这一情况要善于运用待定系数法 五.作业: 1、下列命题正确的是( )A.若,则 B.若,则或0||a0a||||ba ba baC.若,则 D.若,则ba ||||||ba 0a0 a2、已知平行四边形 ABCD 的三个顶点、、,则顶点 D 的) 1 , 2(A)3 , 1(B)4 , 3(C 坐标为( ) A. B. C. D.)2 , 1 ()2 , 2() 1 , 2()2, 2(3、设,与反向的单位向量是,则用表示为)0(||mmaa0ba0bA. B. C. D.0bma 0bma01bma 01bma4、D、E、F 分别为的边 BC、CA、AB 上的中点,且,,ABCaBC bCA  下列命题中正确命题的个数是( )①;②;③;baAD21baBE21baCF21 21④。

      0CFBEAD A.1 个 B.2 个 C.3 个 D.4 个5、化简:=__________ADDEACCE6、已知向量,且,则的坐标_____________)2 , 1 (, 3barrbarrar7、若,则的夹角为______________0, 2, 122ababarrrrrbarr与8、已知向量) 1 , 0(),0 , 1 (,4,23212121eeeebeearrrrrrr其中求 (1)的值; (2) 与的夹角babarrrr ;arbr9、如果向量与, 的夹角都是,而,且,求abc60cb 1||||||cba的值)()2(cbca10、如图,设为内一点,∥,且, OABCPQBCtBCPQOAa,,,试用,, 表示. OBbOCcabcOQOP,答案基础知识训练:D,C,D,2达标练习: D,B,B,D, 5,; 6,(,—),(—0556 553,)556 5537,0, 8,(1)a a b=10,b=10, =5 (2) =arccos45ba 2221109, -1 10,=(1-t)+t, =(1-t)+tOPabOQab。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.