好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2022年转动定律转动惯.pdf

9页
  • 卖家[上传人]:M****1
  • 文档编号:567319776
  • 上传时间:2024-07-19
  • 文档格式:PDF
  • 文档大小:1.59MB
  • / 9 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 转动定律转动惯精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 9 页 2 ————————————————————————————————作者:————————————————————————————————日期:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 9 页 3 第一章连续体力学第一节刚体力学基础§1 刚体定轴转动的描述一、刚体质点是一个抽象的物理模型,如果问题不涉及物体的转动及其形状与大小,它就可以被视为质点,否则,就要采用另外的模型如研究飞轮转动、地球自转等问题时,就不能把飞轮和地球看作质点物体受力时要发生形变,有些物体形变量大(如橡皮等),有些物体形变量小(如铁块等) 当物体形变量与物体本身的线度相比很小时,可以忽略掉形变量,这样的物体就叫做刚体 刚体的特点是在外力作用下各质元之间的相对位置保持不变显然, 严格的刚体是不存在的,它是一种理想模型注意: 忽略了形变量不等于没有形变因为没有形变就没有弹力,因此刚体只是忽略了与问题关系不大的微小形变量。

      如图,将一个长型物体水平放置,在A端以水平力F推之,则该物体要获得水平加速度这件事看起来平淡无奇,但我们要问: 力F只作用在物体的A部分,B、C各部分,乃至最远的Z端,并没受F的作用, 如何也获得了同样的加速度?这当然是推力从A到B、B到C· · · · · ·一步步传下去,一直到Z传递推力的机制是物体的弹性:开始时力F使A加速,而B未动,于是A、B 之间产生压缩而互推;这推力使B 加速,而C 未动,于是B、C 之间产生压力而互推; · · · · · ·依次类推,推力一直传递到Z端由此可见,这是一个弹性力的传递过程,在过程中没有物体的形变是不行的在许多情况下,物体的弹性形变小得可以忽略,这样,就可以把实际物体抽象成刚体所以,刚体就是大小和形状完全不变的物体完全不发生形变的物体如何传递力?问题不该这样提实际上, 弹性波传播速度正比于弹性模量的平方根物体的刚性越大,弹性模量越大,扰动在其中的传递速度也越大刚体模型与弹性波传播速度无穷大的假设是等价的一般说来,固体中弹性波的速度约为33 10 m/s,在1ms内传播3m左右,只要我们所讨论的运动过程比这缓慢的多,就可以认为弹性扰动的传递是瞬时的,亦即,可把物体当作刚体处理。

      二、刚体的基本运动刚体的运动形式多种多样,但总可以被看成是平动与转动的合成平动和转动是刚体最基本的运动形式刚体的转动又分为定轴转动和瞬时轴转动定轴转动是指刚体的转轴是固定不动的;瞬时轴转动是指刚体的转轴不断变化本章主要研究刚体的定轴转动三、刚体定轴转动的描述刚体作定轴转动时,其上各点均作圆周运动,且圆心都在转轴上所以,刚体上各点的角位移、角速度、角加速度都是一样的,因此用角量描述刚体的定轴转动比较适宜如图所示,刚体作定轴转动,其角速度为dtd角速度是一矢量,它的方向与转动的方向成右手螺旋关系精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 9 页 4 刚体的角加速度为22dddtdt角加速度也是一矢量当增加时,v与同向;当减小时,v与反向§2 刚体定轴转动定律一、力对轴的矩刚体作定轴转动时,其轴是被固定的假定刚体受到外力F作用把F分解成平行于轴的分力//F和垂直于轴的分力F//F的力矩被轴所受的力R、R平衡了,所以它对刚体的定轴转动没有贡献F又可分解成切向分力tF和法向分力nF 由于nF通过O点,所以不产生力矩因此与刚体定轴转动有关的只是tF,即只有tF对刚体的转动有贡献。

      定义:力对轴的矩FrM力矩是一个矢量,其方向平行于转轴,大小为tMrF下面考察力对点的矩与力对轴的矩之间的关系在轴上任找一点/O,则力对/O点的矩为FrM其大小为FrFrM090sin它沿轴向的分量为rFFrMMzcoscos显然,力对轴上一点的矩沿轴向的分量等于力对轴的矩,即轴MMz二、刚体对轴的角动量刚体定轴转动时,其上各点都有速度,都有角动量定义:刚体上任一质点对转轴的角动量为vmrL轴式中的r是m相对于轴的矢径角动量的大小和方向为rmvL轴质点对/O的角动量为vmrL其大小为mvrmvrL090sin它沿轴向的分量为rmvmvrLLzcoscos显然,质点对轴上某点的角动量沿轴向的分量等于质点对轴的角动量,即zL轴L整个刚体对轴的总角动量为精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 9 页 5 2()iiiiiiii iiiiiLLrm vrmrm rJ式中的2iiirmI叫刚体对转轴的转动惯量,下一节再对它进行详细的讨论刚体定轴转动时的角动量等于它对轴的转动惯量与角速度之积三、刚体定轴转动定律在第二章中讲过,质点系的角动量定理为dtLdM外式中的外M和L都是相对于某一参考点的。

      本章中,我们关心的是对轴的力矩和对轴的角动量因此,把上式两边同时对轴投影,得dtLddtLdM轴轴轴外)(因为上式是分量式,所以常写成标量形式本章中我们主要讨论对轴的转动,所以可以去掉式中的角码这样上式就变成dtdLM外即质点系定轴转动时各外力对轴的力矩之和等于系统对轴角动量随时间的变化率这就是质点系定轴转动的角动量定理的微分形式对定轴转动的刚体,把上式作如下变换:()dLd JdMJJdtdtdt外即MJ外该式表明:刚体定轴转动时各外力对轴的力矩和等于刚体对轴的转动惯量与角加速度之积这个结论就是刚体作定轴转动时的转动定律下面举例来应用转动定律在以下各例中, 我们都先给出刚体的转动惯量,到下一节再来求它例 1.一轻绳跨过一定滑轮(不打滑),滑轮的两边分别系有质量为1m和2m的物体,且21mm滑轮的半径为R,质量为m,且均匀分布,能绕通过轮心垂直轮面的水平轴转动,摩擦力矩为rM求重物下落时的加速度和绳两端的张力解:做受力分析,列出方程:11122212212rm gTmaTm gm aT RT RMJaRJmR联立各式即可求解例 2.长为l、质量为m的匀质细杆竖直放置,处于非稳定平衡状态。

      若它受到一微小扰动,它将在重力作用下绕其下端的固定铰链转动,试计算它转到与铅直方向成时的角速精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 9 页 6 度解:受力分析如图杆转动时只有重力有力矩,大小为sin2lmgM由转动定律得dddtdmldtdmllmg223131sin2ddml231dlgdsin2300)cos1(3lg例 3.一半径为R、质量为m的均质圆盘,放在粗糙的水平面上若使其以角速度0开始转动,那么经过多长时间盘才停止转动?圆盘转过的角度为多少?已知盘与桌面间的摩擦系数为解:分析圆盘的受力知,阻碍它转动的力矩是它与桌面之间的摩擦力矩为此,先把盘分成许多小圆环任找一圆环,设其质量为dm,半径为r,则它所受的摩擦力矩为drrRgmrdrRmgrrdrgrdmgrdM222222所以,圆盘所受的总摩擦力矩的大小为mgRdrrRmgdMMR322022注意:M为负值由转动定律得dtdmRmgR22132dgRdtt00043gRt430又dddtd,所以22132dmgRmRd00034RddggR8320精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 9 页 7 §3 刚体的转动惯量转动惯量2i iJmr。

      若刚体的分布是连续的,则可用微元法求其转动惯量把刚体分成许多小质元,任取一个质量为dm的小质元,它对轴的转动惯量为2dJr dm则整个刚体的转动惯量为dmrJ2对形状规则的刚体可用积分法求其转动惯量,对形状不规则的刚体的转动惯量可用实验测定例 1.计算匀质细棒的转动惯量设杆长为l,质量为m求: (1)对过其端点O 且垂直于杆的轴的转动惯量2)对过其中点且垂直于杆的轴的转动惯量解: (1)如图把棒分程许多小质元dm,则dxlmdxdm,它对轴的转动惯量为dxxlmdmxdJ22整个棒的转动惯量为20231mldxxlmdIJl( 2)棒的转动惯量为22. /2/2121mldxxlmdJJll例 2.求质量为m、半径为R的( 1)均质圆环; (2)均质圆盘对过其中心且垂直于圆平面的轴的转动惯量解: (1)圆环的转动惯量为222mRdmRdmRJ( 2)把圆盘分成许多同心圆环组成,任取其中的一个,则rdrRmdsdm22圆环的转动惯量为drrRmdmrdJ3222整个圆盘的转动惯量为RmRdrrRmdJJ0232212例 2 表明: 刚体的转动惯量与刚体的质量分布有关;例 1 表明: 刚体的转动惯量与转轴的位置有关。

      关于转动惯量有一个重要的定理——平行轴定理设刚体的质量为m,它对通过其质心的轴的转动惯量为cJ假定另有一轴与质心轴平行且相距为d,则通过该轴的转动惯量为精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 9 页 8 2cJJmd这一关系叫做平行轴定理证明:如图所示,C(质心)和O分别代表垂直于纸面的两根轴cos2222drdrriii222(2cos )i iiiiJmrm rdrdcos222iiiiirmddmrm22ciiJmddm x式中的ix是im相对于质心C的横坐标iicxmmx1iicxmmxJ22ccJmddmx式中的cx是质心 C 相对于质心C 的横坐标,所以0cx故有J2cJmd最后对转动惯量作几点说明:( 1)刚体的转动惯量是描述刚体转动惯性的物理量质量是描述物体平动惯性的量)( 2)刚体的转动惯量与刚体的质量、质量分布及转轴位置有关 3)若刚体可分成几部分,则它对某一轴的转动惯量等于各部分对该轴转动惯量之和精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 9 页 9 小结一、刚体定轴转动定律MJ外刚体定轴转动时各外力对轴的力矩和等于刚体对轴的转动惯量与角加速度之积。

      这个结论就是刚体作定轴转动时的转动定律二、转动惯量22i iJmrr dm精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 9 页 。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.