
微专题2 函数图象与方程的综合++++课件+2025年中考数学总复习人教版(山东).pptx
17页微专题,2,函数图象,与,方,程的综合,类型,1,一次函数与方程,(,组,),特点,两个一次函数交于一点,且已知交点坐标,以此判断相应方程组的解,示例,思路,结论,如果一次函数,y,1,=,k,1,x,+,b,1,与一次函数,y,2,=,k,2,x,+,b,2,的图象的交点为,P,(,m,n,),那么方程组,的解是,【针对训练】,1.,(2024,济南模拟,),直线,l,1,:,y,=,x,-,与直线,l,2,:,mx,+,ny,=5,交于点,(1,2),则方程组,的解是,(),A,.,B,.,C,.,D,.,A,2.,(2024,济南高新区一模,),若,0,m,n,则直线,y,=-5,x,+,m,与直线,y,=-,x,+,n,的交点在,(),A,.,第一象限,B,.,第二象限,C,.,第三象限,D,.,第四象,限,B,3.,(2024,青岛模拟,),如图,一次函数,y,=,x,+,的图象与,y,=,kx,+,b,的图象相交于点,P,(-2,n,),则,关于,x,y,的方程组,的解是,(),A,.,B,.,C,.,D,.,B,4.,在同一平面直角坐标系中,一次函数,y,=,ax,+,b,与,y,=,mx,+,n,(,a,m,0,则,下列结论中正确的有,(),2,a,+,b,=0;,抛物线,y,=,ax,2,+,bx,+,c,的顶点坐标为,(1,);,a,0;,若,m,(,am,+,b,)4,a,+2,b,则,0,m,0;,b,0,当,-1,x,4,时,y,的最大值是,4,求当,-1,x,4,时,y,的最小值,;,(3),已知,P,(1,),Q,(4,),为平面直角坐标系中两点,当抛物线与线段,PQ,有且只有一个公共点时,请求出,m,的取值范围,.,【解析】,(1),令,y,=0,mx,2,-4,mx,+3,m,=0,m,0,x,2,-4,x,+3=0,解得,:,x,1,=3,x,2,=1,二次函数图象与,x,轴的交点坐标为,(1,0),(3,0,),.,(2),m,0,该二次函数的图象开口向上,且对称轴为直线,x,=2,当,-1,x,4,时,在,x,=-1,时,y,取最大值为,4,代入解析式,y,=,mx,2,-4,mx,+3,m,m,+4,m,+3,m,=4,m,=,二次函数解析式,y,=,x,2,-2,x,+,当,x,=2,时,y,取到在,-1,x,4,上的最小值,当,x,=2,时,y,=,x,2,-2,x,+,=,2,2,-22+,=-,当,-1,x,4,时,y,的最小值为,-,.,(3),二次函数,y,=,mx,2,-4,mx,+3,m,当,x,=1,时,得,y,=0,当,x,=4,时,得,y,=3,m,当,m,0,时,解得,m,;,当,m,0,时,解得,m,-4,;,当,PQ,过抛物线顶点时,当,x,=2,时,y,=,mx,2,-4,mx,+3,m,=-,m,-,m,=,解得,:,m,=-,;,当,m,或,m,-4,或,m,=-,抛物线与线段,PQ,有且只有一个公共点,.,本课结束,。












