
基本积分公式.doc
3页基本积分表(1)kdx = kx C (k 是常数)(2)x dx - C, (u 一1)J k+1(3)1dx = 1 n | x | C x(4)dx2 =arl tan x + C1 x(5)dxarcs in x Cd-x2(6)cosxdx =sin x C(7)sin xdx = -cosx C(8)12 dx - ta n x C cos x(9)1dx 二- cot x C sin x(10)secx tanxdx 二 secx C(11)cscxcotxdx - -cscx C(12)exd^ = ex C(13)xaxdx = — C , (a 0,且a") ln a(14)shxdx 二 chx C(15)chxdx 二 shx C(16)1 . 1 . x _dx arc tan Ca x a a(17) 2 1 2dx = 1 In | x—a| C'x—a 2a x+a(18)一.a2「x2dx 二 arcs in2#(19) J J 2 dx = In( x + Ja2 +x2) + C• Ja2 +x2(20)J ; J 2 Tn |x+Jx2—a2|P■- x -a(21) tanxdx - -In |cosx| C(22) cot xdx = In | sin x| C(23) secxdx = In | secx tan x | C(24) escxdx = In| cscx-cotx| C注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证2、以上公式把x换成u仍成立,u是以x为自变量的函数。
3、复习三角函数公式:.2 sinx cos2 x =1,tan2x sec x,sin 2x1 cos2x =2sin xcosx, cos x =2sin21「cos2x2注:由f[ :(x)] :'(x)dx二f[ (x)]d (x),此步为凑微分过程,所以第一类换元法也叫凑微分法此方法是非常重要的一种积分法,要运用自如, 务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧小结:1常用凑微分公式积分类型换兀公式11.『f (ax+b)dx =— f f (ax+b)d (ax+b) (a 式0) ' a 'u = ax 十 b2jf (x^x^dx = (20)A u = xL13j f (ln x) -dx = j f (In x)d(ln x) xu = I n x第4.. J f (ex) exdx = J f (ex )dexxu =e换5j f (a %) ”axdx =—^ J f (ax )da xIn a 1u = a元6. J f (sin x) cos xdx = J f (sin x)d sin xu = sin x积7. [ f (cosx) sin xdx = -「f (cos x)d cosxu = cos x分法8. J f (tan x) sec xdx = J f (tan x)d tan xu = tan x9j f (cot x) csc xdx = - f f (cot x)d cot xu = cot X110 4 f (arctan x) _ d^ — [ f (arctan x)d (arctan x)u = arctan xb 1+x21u = arcsin x11. | t (arcsin x) — / ■ dx — — | t (arcsin x)d (arcsin x)W —X23。