
第三章经济增长.ppt
50页第三章 经济增长1.资本积累2.资本积累的黄金律3.人口增长与技术进步4.增长理论的应用索洛模型(新古典增长理论)与内生增长理论•经济增长是指一国产出水平的提高,通常情况下,用一国的GDP增长率和人均GDP的增长率来衡量一国的经济增长情况•促进经济增长是一国经济政策的核心目标•本章以索洛模型为基础对经济增长进行分析,是本篇以及本书的重点之一2•第一节 资本积累•一、基本假定•Solow growth model是为了说明在一个经济中,资本存量的增长、劳动力的增长以及技术进步如何影响一国物品与劳务的总产出•对于Solow growth model的考察首先从其中的供给和需求如何决定资本积累开始•为了简单起见,首先让劳动力和技术保持不变,以后再放松这些假定这样的假定不会影响结论的正确性3•1. Solow growth model在供给方面的假定•生产函数 Y=F(K,L)•索洛模型采用的生产函数是新古典主义的,新古典的生产函数表明,产出取决于资本存量和劳动力,技术因素隐含在函数F的形式中•新古典生产函数的基本特征是劳动和资本两种要素之间可以平滑替代,即函数F有连续的一阶和二阶导数。
并且满足以下性质:(1)各要素的边际产出大于零且递减即:4 (2)规模报酬不变,也就是说生产函数满足一次齐次性,即λY=F(λK,λL),对于任意的正数λ,上述公式都成立 (3)满足“伊纳德条件”(Inada Condition),即:资本(或劳动)趋向于0时,资本(或劳动)的边际产出趋向于无穷大;资本(或劳动)趋向于无穷大时,资本(或劳动)的边际产出趋向于0 为了分析更简单,可以把索洛模型中的变量都表示成人均的形式,只要用λ=1/L,并用小写字目表示人均数量,则索洛的生产函数就是:y=F (k,1)=f (k) 即人均产出值和人均资本有关,是人均资本的函数y0f (k)k图3.1 生产函数5•2. Solow growth model在需求方面的假定•模型的需求分为消费和投资两部分即人均产出分为人均消费和人均投资,均衡时,y=c+i 模型中的消费取决于:c=(1-s)y注s是该经济的储蓄率,0≤s≤1 •在此基础上,我们有:•y=(1-s)y+i•y=y-sy+i•i=sy•即:一个经济的人均投资等于人均储蓄,这是产品市场均衡的要求。
注:注:Y=C+S C=Y-S C/L=Y/L-S/Lc=y-S/L S/L=S/L×Y/Y=S/Y×Y/L=sy c=y-sy =(1-s)y6一是投资投资越多,资本存量越大那么投资是如何决定的?a.投资取决于人均资本存量由于人均投资是每个劳动力产出的一定比例,即i=sy把生产函数带入上述方程,投资就变成了人均资本的函数:i=sf(k)同时,由于投资又是影响资本存量的两个因素之一,而且是主要因素因此,在储蓄率一定的条件下,资本存量和投资之间实际上存在着一种动态循环的影响和决定关系二、资本积累和稳态由于人均产出只与人均资本有关,现在讨论一个经济的资本存量的变化是如何影响经济增长的1.影响资本存量变化的因素:投资(I)+折旧(D)b.投资取决于储蓄率储蓄率越高,则在资本存量和产出水平一定的条件下,投资水平越高而且,由于投资和消费之间存在替代关系,一定条件下,投资越多,则消费越少这可以通过图3.2来反映y0y=f (k)i=s f (k)yci图3.2 产出、消费和投资k7•二是折旧折旧是资本存量随着使用和时间的变化而损耗和减少的资本量为了简单起见,假定一个经济中所有的资本都以一个固定的比例δ 减少,把δ 称为平均折旧率。
则,每年折旧掉的资本数量就是D=δ K,每年折旧掉的人均资本数量就是d=δ k,也就是人均资本的函数可以用下图说明δkδkk0图3.3 折旧由上述内容可见,折旧既取决于折旧率,也取决于人均资本存量当我们把影响资本存量的上述两个因素(投资和折旧)放在一起时,有:8•2.资本存量的稳态•根据上述公式,人均资本存量的变化等于人均投资i=s f (k)减去现有资本的人均折旧,在储蓄率和折旧率一定的情况下,资本存量的变化只取决于资本存量本身和生产函数的形式对此可以通过图3.4来说明i0δks f (k)kk1k* k2图3.4 投资、折旧和稳态从图中可以看出:(1)人均资本存量越高人均投资越大,同时人均折旧也越大2)人均资本存量的净变化可能大于0也可能小于0,这取决于在当前人均资本存量水平上人均投资和人均折旧的相对大小3)在储蓄率、折旧率一定的情况下,而生产函数具有边际产出递减的性质时,一定存在唯一的满足新增投资正好与折旧相同的点,此时△k=0,人均资本存量会保持稳态水平即在k*点•在索洛模型中,稳定状态是一个经济的长期均衡,而且具有一种真正的稳定性不管经济的初始水平是什么,它最后总会达到稳定状态的资本水平,并且既是由于某种意外情况的冲击,经济偏离了原来的稳定状态,它也能够回复到原来的稳定状态。
如图3.4的k1 k2点所示•同时,根据稳态资本变化量的公式,我们可以得出储蓄率、折旧率、稳态人均资本、稳态人均产出水平四者之间的关系9•3.稳态的意义•稳态不仅对应一个特殊的资本存量水平,而且也对应特定的产出、收入和消费水平•有较高的资本稳态水平,一定有较高的稳态产出水平•通过政策手段,调控储蓄率,可以影响稳态的产出水平10三、储蓄率对稳态的影响 假定一个经济的储蓄率提高,则较高的储蓄率会对应较高的人均资本存量水平和较高的人均产出(收入)水平s2 f (k)图3.5 储蓄率变化对稳态的影响索洛模型表明:如果一个经济的储蓄率上升,这个经济稳定状态的人均资本存量和人均产出水平等都会上升如果一个经济的储蓄率下降,那么就会出现相反的变化,即这个经济稳定状态的人均资本存量和人均产出水平等都下降储蓄率是一个经济中稳态资本存量的关键决定因素i,y0δkks1 f (k)i1*=δk1*i2*=δk2*11•储蓄率对一个经济稳定状态的影响,说明了储蓄率的高低对经济增长速度的一方面影响因为较高的储蓄率意味着较高的稳定状态,那么当一个经济的当前资本存量水平较低时,就意味着与稳定状态可能存在更大的差距,这样经济增长就会有较大的空间和速度。
•但较高的储蓄率导致较快的增长仅仅是暂时的因为在长期中只要经济达到它的稳态,那么它就不会再继续增长如果一个经济保持较高的储蓄率,它会保持较大的资本存量和较高的产出水平,但它无法保持较高的增长率,甚至无法保持增长在模型的假设下,理论上除非储蓄率不断提高,否则人均意义上的经济增长是不可能长期持续的12第二节 资本积累的黄金律•上一节分析了储蓄率和稳态资本存量及收入之间的关系,现在进一步讨论什么是最优的资本积累水平这个问题在第四节中则将讨论政府的政策如何影响储蓄率,这里的分析可以看作是给这些政策提供理论根据•首先假设政策制定者可以把储蓄率调控到任意水平因此通过调控储蓄率,政策制定者可以得到任意资本存量的稳定状态那么政策制定者会选择资本存量水平多高的稳定状态?是否资本存量水平越高越好呢?13•一、黄金律•首先可以肯定的是,资本数量和产出不是人们追求的根本目标,人们进行经济活动要实现的根本目标是长期中的消费福利,即他们在长期中能够消费的产品和服务的数量由于高产出很可能是以高储蓄、高投资为代价实现的,而高储蓄则会减少当前消费的数量,因此高产出有可能不仅不能导致更多的消费,反而会降低消费,因此消费福利与产出并不完全一致。
•因此,一个以人们的福利为根本目标的政策制定者,应该以尽可能提高人们的长期消费总水平为制定政策和选择稳定状态的标准.也就是说,一个好的政策制定者应该选择长期消费水平最高的稳定状态长期消费总水平最高的稳定状态被称为资本积累的“黄金律水平”(Golden rule level)记为kg*资本积累的黄金律,这个名称来源于《圣经》中行为的黄金律:“你想要别人怎样对待你,你就必须怎样对待别人(己所不欲,勿施于人)”经济学意义上的黄金律可被解释为:“如果我们对当前和未来世代的成员提供相同数量的消费——也就是说我们给予未来世代的并不比给予我们自己的要少,——则人均消费的数量即为cgold14•那么一个经济的黄金律稳态水平在哪里呢?怎么能判断出一个经济的稳定状态是否正好是黄金律水平呢?要得到这些问题的答案,必须先知道一个经济稳定状态的人均消费水平是由什么决定的,然后才能知道怎样的稳定状态是使消费最大化的•为了找到稳定状态人均消费,可以从y=c+i开始,把上式写为c=y-i•由于稳态的人均产出为f (k*),稳态投资等于折旧δk*因此,则稳态的人均消费为:• c*= f (k*)-δk*•即稳定状态的消费是稳态产出和稳态折旧之差。
15 c*= f (k*) -δk* 表明稳定状态资本水平的提高,对稳定状态的人均消费有两种对立的影响,它通过使产出增加提高消费,但同时又因为需要有更多的产出去替代折旧掉的资本而使消费减少,而最终稳定状态的消费究竟是提高了还是降低了则要看两者力度的相对大小 图3.6反映了稳定状态消费水平与稳定状态产出和稳定状态折旧之间的关系该图表明存在一个资本积累水平,能够使得f (k*)和δk*之间的距离,也就是稳定状态消费水平最大化这个稳定状态资本存量水平当然就是前面定义的黄金律水平kg*图3.6 资本积累的黄金率水平f (k) Ey0kδki=sgf(k)i=s1f(k)i=s2f(k)k2*c2*c1*k1*16 图3.6 资本积累的黄金率水平f (k) Ey0kδki=sgf(k)i=s1f(k)i=s2f(k)k2*c2*c1*k1*v如果资本存量低于黄金律水平,资本存量增加所增加的产出比增加的折旧大,从而消费将会增加在这种情况下,生产函数比δk*线更陡,从而当资本存量增加时,等于消费的两条线之间的距离倾向于上升这时候促使稳定状态资本水平上升是有益的,能够提高稳定状态的消费水平。
v相反,如果资本存量已经在黄金律水平之上,那么资本存量的增加则将会反过来减少稳定状态的人均消费,因为产出增加小于折旧的增加在这种情况下,应该降低稳定状态的资本水平在资本的黄金律水平,生产函数和δk*线的斜率相同,消费达到最大值,这是应该维持的最佳水平的稳定状态17•再用稍有不同的方法加以说明•假设一个经济初始的稳定状态人均资本存量水平为k* ,而政策制定者正在考虑把稳定状态的人均资本存量提高到k* +1那么增加的人均产出将是 f (k* +1)-f (k*),这就是人均资本的边际产出MPk由于再增加1个单位人均资本所增加的人均折旧等于δ,因此该额外单位人均资本对消费的净影响为MPk-δ,即人均资本的边际产出减去折旧率如果稳定状态人均资本存量低于黄金律水平,那么人均资本存量的增加会增加人均消费,因为人均资本的边际产出大于折旧率如果人均资本存量超过黄金律水平,则人均资本的增加会减少人均消费,因为人均资本的边际产出低于折旧率因此,黄金律的基本条件是:MPk=δ•即在资本的黄金律稳态水平,人均资本的边际产出等于折旧率也就是说,在黄金律水平,人均资本的边际产出减去折旧等于018需要注意的是,虽然一个经济会自动收敛于一个稳定状态,但并不会自动收敛到一个黄金律的稳定状态。
事实上,要让一个经济有黄金律的稳定状态,要通过对储蓄率的选择,使稳定状态的资本存量水平正好是黄金率水平图3.7就说明了只要选择储蓄率使储蓄曲线与折旧线相交于黄金律稳态资本存量,那么该经济的稳定状态一定是黄金律稳定状态如果储蓄率高于这个水平,则稳态资本存量就会太高;如果储蓄率低于此水平,则稳态资本存量又会偏低,都不能实现长期消费的最大化在图中,人均储蓄=人均投资=人均折旧人均折旧曲线的斜率 = =人均生产函数曲线的斜率图3.7资本积累的黄金率水平f (k) Ey0kδki=sgf(k)i=s1f(k)i=s2f(k)k2*c2*c1*k1*19在图中的均衡点kg*上,一个经济具有稳态的增长率;具有稳态折旧率;具有稳态的最佳储蓄率;具有长期消费的最高水平;也具有最佳的资本存量水平而这种黄金律稳态,是通过选择储蓄率而得到的图3.7资本积累的黄金率水平f (k) Ey0kδki=sgf(k)i=s1f(k)i=s2f(k)k2*c2*c1*k1*20 二、黄金稳态过程 到目前为止,我们一直简单化地假定政策制定者能够通过到目前为止,我们一直简单化地假定政策制定者能够通过选择,直接得到想要的稳定状态。
在这种情况下,政策制定者选择,直接得到想要的稳定状态在这种情况下,政策制定者选择有最高消费水平的稳态,即黄金律稳态,是理所当然的选择有最高消费水平的稳态,即黄金律稳态,是理所当然的但事实上任何一个经济在政策制定者确定它的稳定状态目标的但事实上任何一个经济在政策制定者确定它的稳定状态目标的时候,可能已经达到了一个非黄金律的稳态,因此政策制定者时候,可能已经达到了一个非黄金律的稳态,因此政策制定者要选择黄金律的稳态,意味着必须有一种稳定状态的要选择黄金律的稳态,意味着必须有一种稳定状态的“变换变换”这种在稳态之间的变换很可能会对消费、投资等发生冲击和影这种在稳态之间的变换很可能会对消费、投资等发生冲击和影响,这些冲击和影响是否会有什么特别的后果,是否会阻止政响,这些冲击和影响是否会有什么特别的后果,是否会阻止政策制定者去尝试实现黄金律稳态,如果要使政策制定者的选择策制定者去尝试实现黄金律稳态,如果要使政策制定者的选择决策更符合实际,那么这些问题是必须加以讨论的决策更符合实际,那么这些问题是必须加以讨论的 需要考虑的有两种情况,一种情况是经济的初始稳态资本需要考虑的有两种情况,一种情况是经济的初始稳态资本存量高于黄金律稳态,另一种是低于黄金律稳态。
在这两种情存量高于黄金律稳态,另一种是低于黄金律稳态在这两种情况中,资本过少的第二种情况的问题更棘手因为第一种情况况中,资本过少的第二种情况的问题更棘手因为第一种情况实现黄金律稳态的手段是采取促进当前消费的政策,这通常阻实现黄金律稳态的手段是采取促进当前消费的政策,这通常阻力会较小一些,而后一种情况则迫使政策制定者必须考虑是否力会较小一些,而后一种情况则迫使政策制定者必须考虑是否以减少当前消费为代价,提高储蓄率和将来的消费,因此必须以减少当前消费为代价,提高储蓄率和将来的消费,因此必须对当前的消费利益和将来的消费利益进行评估和取舍对当前的消费利益和将来的消费利益进行评估和取舍图3.7资本积累的黄金率水平f (k) Ey0kδki=sgf(k)i=s1f(k)i=s2f(k)k2*c2*c1*k1*21t00t原稳态投资原稳态投资i*原稳态消费原稳态消费c*原稳态产出原稳态产出y*v我们先考虑一个经济的资本存量比它的黄金律稳定状态资本存量更多的情况在这种情况下,政策制定者将采取降低储蓄率以降低稳态资本存量的政策v假设政策能够成功,储蓄率将在时刻 t0 降到最终会实现黄金律稳态的水平图3.8反映了当储蓄率下降的时候,对产出、消费和投资分别有什么影响。
icy图3.8资本过多时降低储蓄率的影响22t0图3.8资本过少时降低储蓄率的影响0t原稳态投资原稳态投资i*原稳态消费原稳态消费c*原稳态产出原稳态产出y*v但如果一个经济从低于黄金律稳态的资本水平开始,情况就有些不同了这时候政策制定者必须提高储蓄率以达到黄金律稳态图3.9表明将会发生什么情况v最终,新的消费水平高于原来的消费水平tcy上述储蓄率变化虽然最终也能够提高人们长期的消费水平,但却并不能保证这种政策是绝对值得肯定的,一定会得到支持和能够顺利实行的原因是虽然黄金律稳态的消费水平高于当前储蓄水平相应的稳态消费,但要通过提高储蓄率使稳定状态从当前水平调整到黄金律水平,在这种调整的开始阶段消费会下降这与在任何时点都产生较高的消费的从高于黄金律的稳态开始的情况有很大的差别这时候政策制定者必须在当前的消费和未来的消费之间进行选择,必须决定是否以牺牲当前的消费为代价追求将来的更多消费23•第三节 人口增长和技术进步•基本的索洛模型表明,高储蓄和高投资是能提高一个经济的稳定状态资本和产出水平,在原来资本水平较低(低于黄金律稳态水平)时也能够提高长期中的消费,并能够在该经济达到新的稳定状态之前的阶段中,促进经济增长,但资本积累本身却不能解释持续的经济增长持续的经济增长。
因为在储蓄率及其他条件不变的情况下,投资和产出最终都会逼近一个稳定状态,不再发生变化•因此,要解释持续的经济增长就必须对索洛模型加以扩展扩展索洛模型以解释持续经济增长的方法是将基本的索洛模型中没有考虑的两个因素,即人口增长(也意味着劳动力增加)和技术进步引进模型本节先把人口增长引入模型,即不再像在前两节中那样假设人口固定不变,而是假设人口和劳动力以固定速率n增长24•一、人口增长的影响•首先我们分析一下人口的增长对一个经济的稳态有什么影响为了回答这个问题,首先分析一下人口的增长与投资和折旧一起,是如何影响人均资本积累的正如早已知道的,投资会提高资本存量,而折旧则会减少它现在有第三种力量也对人均资本产生影响,那就是人口或劳动力数量的增长,它会导致人均资本的下降•我们仍然用小写字母代表人均数量.因此y=Y/L代表人均产出,而k=K/L表示人均资本,但现在必须记住,这个劳动力数量L不再是固定不变的,而是不断增长的因此,现在人均资本的变化为:•△k=i-(δ+ n) k注•该方程表明新投资、折旧和人口增长是如何影响人均资本存量的新投资会提高 k,同时折旧和人口增长则在降低 k 以前的人均资本变化公式是这个方程在人口不变,即n=0 情况下的特例。
注:注:I=ΔK+δK ,设设:: ΔK=ΔK1+ΔK2 ,令:令:ΔΔK2=ΔLk则则::I=ΔK1+ΔK2+δK =ΔK1+ ΔLk+δK上式两边同除以上式两边同除以L,得得::I/L=ΔK1/L+ ΔLk/L+δK/Li=Δk+ΔL/L×k+δk= Δk+nk+δkΔk=i-(nk+δk)= i-(n+δ)k25•△k=i-(δ+ n) k•我们可以把(δ+n)k项看作是一种“平衡投资”,即在存在折旧和人口增长的情况下,为了保持人均资本不变必需追加的投资平衡投资包括对现有资本的折旧δk 的弥补,还包括给新劳动力配备资本的投资,必需的数量是nk,即n个新劳动力每人k单位资本该方程表明人口增长在降低人均资本积累方面的影响是与资本折旧相似的,只是折旧是通过资本的折损降低k,而人口增长则是通过资本存量在一个更大的人口中摊薄而降低k•用sf(k)代替人均资本变化方程中的投资i,则方程可以写成:•△k=sf(k)-(δ+ n) k (3.19) •我们可以通过图3.10来说明这种包括了人口增长因素的稳定状态26如果人均资本存量k小于k* (在k*左边) ,新增人均i投资大于平衡投资,因而k会上升,y也会相应的增加;如果k大于k* (在k*右边) ,人均投资i小于平衡投资,k就会下降, y也会相应的减少;当k正好等于稳态水平时,新增人均投资i对人均资本存量的正效应,正好与人均折旧和人口增长的负效应相平衡, k将保持不变。
一旦经济处于稳态,投资只有两个目的,一部分置换折旧掉的资本;其余的给新劳动力提供稳态水平的人均资本i0(δ+n) ks f (k)=ikk*图3.10 有人口增长的稳态27•人口增长在三个方面改变了基本的索洛模型•首先它使得我们距离对持续增长的解释接近了一些因为在有人口增长的稳态,虽然人均资本和产出不变,但由于劳动力的数量以速率n增长,因此总资本和总产出也会以速率n增长,人口增长虽然不能解释生活水平持续提高意义上的增长,因为在稳态人均产出没有变化,但至少能解释在总产出意义上的持续增长28其次把人口增长引进索洛模型为我们提供了关于为什么有些国家富裕而另一些国家则很贫穷的一种解释我们用图3.11来加以说明如果假设两个国家在经济各方面的条件基本相同,但两国的人口增长率分别为n1和n2,且n1< n2 那么这两个国家的稳定状态人均资本将是不同的很明显有较高人口增长率的国家的稳定状态人均资本较低,人口增长率较高国家的稳定状态人均产出也较低就是说,在其他条件都相同的情况下,长期中人口增长率较高的国家的人均GDP水平较低,从而生活水平也会较低这就说明人口增长率的不同很可能是不同国家富裕程度差别的重要原因。
图3.11 人口增长对稳态的影响 条件 n1< n2 i0(δ+n1) k平衡投资平衡投资s f (k)=ik(δ+n2) k平衡投资平衡投资①人口增长率的提高人口增长率的提高........②减少了稳态资本存量减少了稳态资本存量①29•最后,引进人口增长率会改变决定资本积累黄金律水平的公式,人均消费为:c=y- i• 把引进人口增长因素的稳态产出f (k*)、稳态投资(δ+n) k* 代入上式,可以得到有人口增长的稳态消费为:• c*= f (k*)-(δ+n) k*•因此,能够使稳态人均消费最大化的稳态人均资本水平k*必须满足下式:•MPk=δ+n•也就是说,在黄金率稳定状态,资本的边际产出应该等于折旧率加上人口增长率30• 二、技术进步和劳动效率•到目前为止,一直是在仅有资本和劳动两种投入要素,以及生产技术和劳动效率因素是不变的前提下进行讨论的事实上,这与现实情况之间显然是有差距的,而且排斥技术进步也使得无法解释人均意义上的持续经济增长现在把技术进步因素结合进索洛模型•为了引进技术进步,我们回到把总资本、总劳动力和总产出联系在一起的生产函数,而且,为了让技术进步在生产函数中反映出来,我们把生产函数写为:Y=F(K,E) • E=TL,T≥1为技术进步变量,是能够反映技术进步的“劳动效率”变量。
E可以看作是用“效率单位”衡量的劳动数量(有效数额的劳动)•现在,总产出就取决于资本单位数K和有效劳动数E两个因素31•在有了上述铺垫以后,技术进步可以用劳动效率变量T的增长来反映,最简单的是假设技术进步使T以一个固定速率g=ΔT/T增长如g=0.02,即每个单位劳动力的效率都提高2%这种形式的技术进步被称为“劳动增强型”(Labor augmenting),g则称为“劳动增强技术进步速率”由于劳动力L以速率n增长,而每单位劳动力的效率T以速率g提高,因此,有效劳动数量E=T•L以速率(n+g)增长32•三、有技术进步的稳定状态•用对劳动的“放大”理解技术进步,技术进步的作用就与人口增长很相似了我们已经讨论过在人口,即劳动力数量随时间增长时经济的稳定状态条件下,人均意义上的资本和产出增长问题为了把技术进步因素考虑进来,进一步在有效劳动意义上,允许有效劳动数量增长的情况下进行分析•首先对变量的代数符号进行重新安排,现在k=K/E=K/(T•L),是 每 单 位 有 效 劳 动 的 资 本 , 而 不 是 人 均 资 本 ;y=Y/E=Y/(T•L)是每单位有效劳动的产出,而不是人均产出。
原来意义上的k和y则可以看作劳动力的效率T不变且等于 1时的特例当k和y的意义重新定义过以后,有技术进步的生产函数就仍然可以写成:y=f (k) (3.24) •分析的次序仍然与讨论人口增长时一样现在每单位有效劳动的资本k的变化规律为: •△k=s f (k)-(δ+ n+ g) k 注注 (3.25)注:注:I=ΔK+D=ΔK1+ΔK2+D, ΔK2=ΔEk=Δ(T·L)k=(ΔT·L+ΔL·T)k I =ΔK1+ (ΔT·L+ΔL·T)k +δK I/ (T·L)= ΔK1 / (T·L)+ [ΔT·L /(T·L)+ΔL·T /(T·L)]k+δK /(T·L) i=Δk+(n+g)k+δk , Δk=i--(n+g+δ)k=sf(k)-(n+g+δ)k33当我们对k和y重新定义过以后,引进技术进步因素,在形式上对一个经济的稳定状态等并不会产生影响,图3.12与没有技术进步的图3.10之间的差别,只是平衡投资线中多了一个因素gk。
图3.12表明在有技术进步时经济同样存在一个资本水平k*,在此处资本存量具有稳定性,即这个经济的稳定状态,该稳定状态同样代表经济的长期均衡i0(δ+ n+ g) k平衡投资平衡投资s f (k)=ikk*图3.12 有技术进步的稳态34•但实际上图3.12与图3.10所对应的经济之间的差别,并不只有表面上的那么少,因为现在模型中的资本和产出都是每单位有效劳动意义上的平均数量,而不是原来的人均数量 •因此在有技术进步的索洛模型中,虽然在稳定状态每单位有效劳动的资本k*=K/(T•L)和产出y*=Y/(T•L)都不变,但人均产出Y/L=y*T 和总产出Y=y*•T•L 却分别以g和和n+g的速率增长因此在加进技术进步以后,索洛模型终于能够解释我们所观察到的生活水平意义上的持续增长了,即技术进步能够导致人均产出的持续增长 35•由于提高储蓄率只能实现在到达稳态之前的短期中的增长,而不是可以长期持续的高增长率,而人口的增长则对人均意义上的增长没有意义因此索洛模型表明,只有技术进步是一个经济长期持续增长的源泉,能够推动产出和生活水平的不断上升•引进技术进步因素同样也会改变确定黄金律稳定状态的公式(条件)。
资本积累的黄金律水平现在是最大化每单位有效劳动消费的水平很容易证明每单位有效劳动的稳定状态消费为:•c*= f (k*)-(δ+ n+ g) k* •因此,稳定状态消费实现最大化的条件是:•MPk=δ+ n+ g•也就是说,在资本积累的黄金律水平,(每单位有效劳动)资本的边际净产出,应该等于总产出的增长率,即MPK-δ=(n+g)由于现实经济既有人口的增长,也有技术进步,因此这是判断各个国家的资本存量高于还是低于黄金律稳态水平的更加现实的标准36第四节 经济增长理论的应用与深化•一、增长的源泉一、增长的源泉——增长核算增长核算•对经济增长的因素的测定是一件十分有意义的工作,它不仅可以为我们提对经济增长的因素的测定是一件十分有意义的工作,它不仅可以为我们提供分析和比较各国经济增长的量化指标,还能为政策制定者制定促进经济供分析和比较各国经济增长的量化指标,还能为政策制定者制定促进经济增长的政策提供经验参考增长的政策提供经验参考•一国经济增长的源泉,按新古典增长理论可以归纳为两个方面,即要素一国经济增长的源泉,按新古典增长理论可以归纳为两个方面,即要素(资本和劳动)投入的增长和技术进步利用柯布(资本和劳动)投入的增长和技术进步。
利用柯布—道格拉斯生产函数:道格拉斯生产函数:Y=AKαL1-α ((3.31))•A反反应技技术水平的水平的变量,称量,称为全要素生全要素生产率(率(TFP);α为资本的本的产出出弹性,性,1-α为劳动的的产出出弹性对((3.31)式两)式两边取取对数得:数得:• lnY=lnA+αlnK+(1-α)lnL 各各变量随量随时间的推移而的推移而变化,化,对该式求式求时间t的微分得的微分得:• ΔY/Y=ΔA/A+αΔK/K+ (1-α) ΔL/L (3.32)• ΔA/A= ΔY/Y-αΔK/K- (1-α) ΔL/L (3.33)•((3.32)式两)式两边减减ΔL/L 可得可得: • ΔY/Y -ΔL/L = ΔA/A+α(ΔK/K-ΔL/L) (3.34)•即:即: Δy/y=ΔA/A+αΔk/k (3.35)37二、经济增长理论的深化• (一)索洛模型的缺陷•以索洛增长模型为代表的新古典经济增长理论是现代经济增长理论的基础。
索格模型描述了一个完全竞争的经济,物质资本和劳动投入的增长引起产出的增长新古典生产函数决定了在劳动供给不变时,资本的边际收益递减这一生产函数与储蓄率不变的假设相结合,形成了一个简单的一般均衡模型•新古典经济增长模型的这些假设自然引出了这样一些推论:首先,当资本存量增长时,由于边际报酬递减,经济增长会减慢,最终经济增长将停止在索洛模型中,稳态的人均资本存量和人均产量,决定于储蓄率、人口增长率和生产函数等因素新古典增长理论的这一结论并不符合世界各国经济增长的现实在过去的100多年间,许多国家的人均产出保持了正的增长率,增长率并没有长期下降的趋势对于七个统计数据比较完整的发达国家,经济增长率在1970年以来确实有所下降,但是近代的经济增长率仍明显地高于1870年以后早期的经济增长率这一事实与理论的矛盾促使经济学家以假定外生的技术进步弥补基本索洛模型的缺陷这种方法能用以说明长期的正的人均产出增长率,但并不能帮助新古典经济增长理论家摆脱困境,因为这意味着经济增长的主要动力来自于增长理论研究的范围之外,增增长长模模型型不不能能解解释释人人均均意意义义上上的的经经济济的的长长期期持持续增长38 新古典经济增长理论的另一个主要结论是穷国应该比富国增长更快,因为穷国的人均资本存量较低,每单位新增投资能得到较高的报酬率。
然而根据118个国家在1960—1985年期间的统计数据,在1960年时较穷的国家并没有显示较高的经济增长率实际情况是,穷国的经济增长往往更缓慢392003年世界各国(地区)GDP总值排名(按2004年1月1日汇率) 01––––美国––––––––10,8572亿美元 02––––日本–––––––––4,2907亿美元 03––––德国–––––––––2,3862亿美元 04––––英国–––––––––1,7750亿美元 05––––法国–––––––––1,7316亿美元 06–––意大利––––—––1,4554亿美元 07––––中国–––––––––1,3720亿美元 08–––加拿大–––––––––8505亿美元 09–––西班牙–––––––––8271亿美元 10–––墨西哥–––––––––6116亿美元 40国家或地区国家或地区GDP/人(美元)数据来源1卢森堡卢森堡48,900 未注明的为2002年2美国美国36,300 3百慕达群岛百慕达群岛35,200 4开曼群岛开曼群岛35,000 5圣马利诺圣马利诺34,600 20016挪威挪威33,000 7瑞士瑞士32,000 8冰岛冰岛30,200 9加拿大加拿大29,300 10爱尔兰爱尔兰29,300 11比利时比利时29,200 12丹麦丹麦28,900 13日本日本28,700 14阿卢巴阿卢巴28,000 15奥地利奥地利27,900 16香港香港27,200 17荷兰荷兰27,200 18摩纳哥摩纳哥27,000 199919澳大利亚澳大利亚26,900 20德国德国26,200 中国排名第127,人均4700美元,印度排名第156,人均2600美元。
41•(二)新经济增长理论• 索洛模型在解释现实经济增长过程中之所以会出现一些问题,关键索洛模型在解释现实经济增长过程中之所以会出现一些问题,关键在于模型中储蓄率、人口增长率、资本折旧率和技术进步都是外生变量在于模型中储蓄率、人口增长率、资本折旧率和技术进步都是外生变量资本折旧率是外生常数容易理解,因为资本折旧速度不容易人为控制,资本折旧率是外生常数容易理解,因为资本折旧速度不容易人为控制,不同经济的资本折旧率不会有明显差距储蓄率、人口增长率和技术进不同经济的资本折旧率不会有明显差距储蓄率、人口增长率和技术进步是由人们的行为决定的,也是可以通过政策等加以影响的,在不同的步是由人们的行为决定的,也是可以通过政策等加以影响的,在不同的经济中其水平很不相同经济中其水平很不相同• 因此当新古典增长模型不能很好解释增长时,我们自然就会想将储因此当新古典增长模型不能很好解释增长时,我们自然就会想将储蓄率、人口增长率和技术进步等重要参数作为内生变量来考虑,从而可蓄率、人口增长率和技术进步等重要参数作为内生变量来考虑,从而可以由模型的内部来决定经济的长期增长率,这些模型被称作内生经济增以由模型的内部来决定经济的长期增长率,这些模型被称作内生经济增长模型。
这种以内生经济增长为主要特征的新经济增长理论的诞生,标长模型这种以内生经济增长为主要特征的新经济增长理论的诞生,标志着现代经济增长理论进入了一个新的发展阶段保罗志着现代经济增长理论进入了一个新的发展阶段保罗··罗默(罗默(Paul Paul RomerRomer) )和罗伯特和罗伯特··卢卡斯(卢卡斯(Robert Lucas)Robert Lucas)对其早期的发展做出了重要的对其早期的发展做出了重要的贡献贡献• 上世纪八十年代后期兴起和发展起来的内生增长模型有很多,按经济上世纪八十年代后期兴起和发展起来的内生增长模型有很多,按经济增长的推动因素划分,大致可分为增长的推动因素划分,大致可分为要素投入的内生模型要素投入的内生模型和和技术进步的内技术进步的内生模型生模型两大类技术进步的内生模型又可分为:两大类技术进步的内生模型又可分为:报酬递增的生产函数、报酬递增的生产函数、人力资本、干中学、创新人力资本、干中学、创新四种类型四种类型• 42内生增长理论要素投入的内生增长技术进步的内生增长资本←储蓄率←劳动家庭的跨期最优消费选择居民对生育、移民和工作时间的选择将技术进步内生化的方法:1.报酬递增的生产函数;2.人力资本投资;3.干中学;4.创新。
¡为了进一步的阐明内生的增长模型我们先来比较下面的两个图形为了进一步的阐明内生的增长模型我们先来比较下面的两个图形43•图图a是索洛的基本增长模型,是索洛的基本增长模型,c点是稳态点无论在哪里只要储蓄线点是稳态点无论在哪里只要储蓄线sy高高于平衡投资线于平衡投资线(n+d)k,资本就会增加,人均收入增加但是由于资本的,资本就会增加,人均收入增加但是由于资本的边际报酬递减,这个过程最终会陷于停顿边际报酬递减,这个过程最终会陷于停顿•图图b是一个简单的内生增长模型在其中改变了生产函数的假设形状,已是一个简单的内生增长模型在其中改变了生产函数的假设形状,已显示出资本的边际报酬不变生产函数与储蓄曲线变成了直线,储蓄始显示出资本的边际报酬不变生产函数与储蓄曲线变成了直线,储蓄始终大于平衡投资,储蓄率越高储蓄与平衡投资的差距越大,增长的也就终大于平衡投资,储蓄率越高储蓄与平衡投资的差距越大,增长的也就越快,经济可持续地长期增长,越快,经济可持续地长期增长,(n+d)ky=f(k)syy0kck*图图a—索洛增长模型索洛增长模型y0ky=f(k)sy(n+d)k图图b—内生增长模型内生增长模型可以用一个导致内生增长的简单的代数模型,对图可以用一个导致内生增长的简单的代数模型,对图b描述的经济加以阐述。
描述的经济加以阐述假定资本的边际报酬不变,且资本是唯一的要素假定资本的边际报酬不变,且资本是唯一的要素 Y=βK产出产出Y与资本存量成正比,资本的边际报酬为常数与资本存量成正比,资本的边际报酬为常数β假定储蓄率不变为假定储蓄率不变为s,没有人口增长和折旧于是,,没有人口增长和折旧于是, ΔK=sY=sβK 或或 ΔK/K=sβ资本增本增长率与率与储蓄率成正比由于蓄率成正比由于产出与出与资本成正比,本成正比,则,,产出增出增长率率为:: ΔY/Y=sβ在在这个例子中,个例子中,储蓄率越高,蓄率越高,产出增出增长率越高44•如果对生产函数原来假定的形状进行简易的改变,就能对新古典增长理如果对生产函数原来假定的形状进行简易的改变,就能对新古典增长理论引来的问题提供过于简单,但却令人满意的解答那么,否认边际报论引来的问题提供过于简单,但却令人满意的解答。
那么,否认边际报酬递减,这种对深奥的微观经济学原理的侵犯,就意味着,厂商两倍的酬递减,这种对深奥的微观经济学原理的侵犯,就意味着,厂商两倍的资本将生产两倍的产量但是如果两倍的资本生产两倍的产量,那么所资本将生产两倍的产量但是如果两倍的资本生产两倍的产量,那么所有生产要素都增加两倍,就会生产两倍多的产量,就会出现递增的规模有生产要素都增加两倍,就会生产两倍多的产量,就会出现递增的规模报酬这意味着厂商越大就越发有效率,这样就会出现单独一家厂商主报酬这意味着厂商越大就越发有效率,这样就会出现单独一家厂商主宰着整个经济由于出现这种情况的可能性微乎其微,我们应该排除所宰着整个经济由于出现这种情况的可能性微乎其微,我们应该排除所有要素的规模报酬递增与单个要素报酬不变的这种可能性,至少对一家有要素的规模报酬递增与单个要素报酬不变的这种可能性,至少对一家厂商是如此厂商是如此•假定存在着外部性,个别厂商不能获得资本的全部收益当一家厂商增假定存在着外部性,个别厂商不能获得资本的全部收益当一家厂商增加资本时,其产量提高,其他厂商也如此,他们的生产率也会提高,只加资本时,其产量提高,其他厂商也如此,他们的生产率也会提高,只要社会所有要素的私人报酬不变,就不会出现垄断趋势。
要社会所有要素的私人报酬不变,就不会出现垄断趋势•保罗保罗··罗默(罗默(Paul Romer)得机智性突破在于将资本的私人报酬部分地与得机智性突破在于将资本的私人报酬部分地与社会报酬分离投资不仅产生新机器,而且产生新的工作方式社会报酬分离投资不仅产生新机器,而且产生新的工作方式——这有这有时是有意识地对研究工作进行投资,有时则是无意中发现的副产品尽时是有意识地对研究工作进行投资,有时则是无意中发现的副产品尽管厂商攫取了新机器产生的利益,但是方法与思想易于复制(知识扩散)管厂商攫取了新机器产生的利益,但是方法与思想易于复制(知识扩散),要独占新方法与新思想的好处却困难得多要独占新方法与新思想的好处却困难得多45•现在我们对上面的简单内生增长模型进行扩展,使其不仅包括资本,也现在我们对上面的简单内生增长模型进行扩展,使其不仅包括资本,也包括劳动其关键假定是,更优越的技术是资本投资的副产品具体而包括劳动其关键假定是,更优越的技术是资本投资的副产品具体而言,假定技术与总体经济中每个工人的资本水平成正比,言,假定技术与总体经济中每个工人的资本水平成正比,A=βK/N=βk,并并假定技假定技术属于属于劳动增广型,因此生增广型,因此生产函数可写成函数可写成 Y=F(K,AN)。
增增长方程方程(3.35)相相应的改的改变为Δy/y=(1-α)ΔA/A+αΔk/k ,只是技,只是技术增增长不是外生不是外生规定定的,而是取决于的,而是取决于资本的增本的增长::ΔA/A=ΔK/K-ΔN/N=Δk/k•将技将技术增增长公式公式ΔA/A=Δk/k代入增代入增长方程方程Δy/y=(1-α)ΔA/A+αΔk/k得:得: • Δy/y=(1-α) Δk/k +αΔk/k = Δk/k•显示出人均示出人均产出与人均出与人均资本以相同的速度增本以相同的速度增长这意味着意味着y/k是常数•将生将生产函数函数Y=F(K,AN)除以除以K得:得:• Y/K=F(K/K,AN/K)=F(1,β)=β 等式右等式右边分子分母同除以分子分母同除以N得:得:• y/k=β•将将资本本积累方程累方程Δk=sy-(n+d)k改写改写为Δk/k=sy/k-(n+d),把,把y/k=β代入代入得:得: Δk/k=sβ-(n+d)•所以:所以: Δy/y= Δk/k=sβ-(n+d)•人均收入增人均收入增长率率Δy/y= sβ-(n+d) 。
高高储蓄率蓄率产生高人均增生高人均增长率,高人口率,高人口增增长率和高折旧率率和高折旧率导致低人均增致低人均增长率率46•所有这一切都以存在着相当大的资本报酬的外部性这一概念为转移这所有这一切都以存在着相当大的资本报酬的外部性这一概念为转移这合乎事实吗?如果资本是实物机器,可能不会这样反之考虑到人力资合乎事实吗?如果资本是实物机器,可能不会这样反之考虑到人力资本的作用,特别是知识的投资,无论是创造一架新机床还是创造一个新本的作用,特别是知识的投资,无论是创造一架新机床还是创造一个新思想都耗资甚巨但是机床的复制品和第一架机床的成本一样多,而思思想都耗资甚巨但是机床的复制品和第一架机床的成本一样多,而思想的复制品则所需费用甚少或无需费用由于新知识想的复制品则所需费用甚少或无需费用由于新知识——新发明和新发新发明和新发现现——的贡献,只是部分地为创造者所有,就可能存在着巨大的外部收的贡献,只是部分地为创造者所有,就可能存在着巨大的外部收益而且,各种新思想使下一个更新的思想成为可能,因此知识可以无益而且,各种新思想使下一个更新的思想成为可能,因此知识可以无限地增长因此,经济学家认为,一般的人力资本投资和具体的研究与限地增长。
因此,经济学家认为,一般的人力资本投资和具体的研究与开发是理解长期增长的关键开发是理解长期增长的关键•知识就是力量知识就是力量•科学技术是第一生产力科学技术是第一生产力47三、增长的陷阱与两部门模型三、增长的陷阱与两部门模型•解释高增长或低增长与无增长不同,少量解释高增长或低增长与无增长不同,少量增长或毫无增长是对增长或毫无增长是对1820年以来的孟加拉年以来的孟加拉国以及绝大部分人类历史的最准确的写照国以及绝大部分人类历史的最准确的写照解释一个无增长与高增长国家并存的世界,解释一个无增长与高增长国家并存的世界,我们需要一个模型,即能纳入无增长、低我们需要一个模型,即能纳入无增长、低收入的均衡,又能包含正增长、高收入的收入的均衡,又能包含正增长、高收入的均衡换言之,需要一个结合新古典增长均衡换言之,需要一个结合新古典增长与内生增长原理的模型与内生增长原理的模型•假定存在两种投资机会,一种是边际报酬假定存在两种投资机会,一种是边际报酬递减(如新古典增长理论)的,另一种是递减(如新古典增长理论)的,另一种是边际报酬不变(如内生增长理论)的如边际报酬不变(如内生增长理论)的如右图所示右图所示ABkA*kB*0yk(n+d)ksyy=f(k)A点处于点处于“新古典增长稳态新古典增长稳态”,向右达到,向右达到B点其行动则相内生增长模型。
在低点其行动则相内生增长模型在低收收入与低资本水平,导致无增长稳态在高收入与高资本水平(越过入与低资本水平,导致无增长稳态在高收入与高资本水平(越过B点),导点),导致持续增长问题是,社会不仅要选择总投资,还必须对投资的分配做出选致持续增长问题是,社会不仅要选择总投资,还必须对投资的分配做出选择将投资引向研究与开发的社会将有持续的发展;将投资引向实物资本的择将投资引向研究与开发的社会将有持续的发展;将投资引向实物资本的国家,在短期内可能有较高的产出,但以较低的长期增长为代价国家,在短期内可能有较高的产出,但以较低的长期增长为代价48四、增长的陷阱与内生人口增长的索洛模型四、增长的陷阱与内生人口增长的索洛模型•在相当宽泛的收入范围内,人口在相当宽泛的收入范围内,人口的增长本身取决于收入水平在的增长本身取决于收入水平在当代,极端贫穷的国家高出生率,当代,极端贫穷的国家高出生率,高死亡率,结果是较高的人口增高死亡率,结果是较高的人口增长当收入上升时,死亡率下降,长当收入上升时,死亡率下降,尤其是婴儿死亡率的下降,人口尤其是婴儿死亡率的下降,人口增长率上升当收入极高时,出增长率上升当收入极高时,出生率下降,人口增长率下降。
许生率下降,人口增长率下降许多富裕国家的接近人口零增长多富裕国家的接近人口零增长右图表示了具有内生人口增长的右图表示了具有内生人口增长的索洛模型的简单形式索洛模型的简单形式•包含可变人口增长的平衡投资曲包含可变人口增长的平衡投资曲线线[n(y)+d]k缓慢上升缓慢上升,,然后急剧然后急剧上升并最终平直它与上升并最终平直它与sy交于交于A、、B、、C三点A点是有着高人口增点是有着高人口增长与低收入的贫困陷阱长与低收入的贫困陷阱C点是点是具有低人口增长和高收入的稳态具有低人口增长和高收入的稳态B点则是不稳定均衡,因为经济点则是不稳定均衡,因为经济趋向于离开趋向于离开B点oykkA*kB*kC*ABy[n(y)+d]kCsy一个经济如何才能逃脱低收入的陷一个经济如何才能逃脱低收入的陷阱呢?有两种可能如果某个国家阱呢?有两种可能如果某个国家能安排一个能安排一个“大推动大推动”,使收入越过,使收入越过B点,点,经济自身将完成向高收入的经济自身将完成向高收入的C点点移动的其余路程或者,将储蓄线上移移动的其余路程或者,将储蓄线上移、平衡投资线下移,使二者不在、平衡投资线下移,使二者不在A、、B两点相交。
提高储蓄率或提高生产两点相交提高储蓄率或提高生产率都可能提高储蓄线人口控制政率都可能提高储蓄线人口控制政策可降低平衡投资线策可降低平衡投资线一些政府开始认识到降低人口增长一些政府开始认识到降低人口增长的必要性,一些国家的办法是试图的必要性,一些国家的办法是试图说服人们使用避孕工具,另一些国家说服人们使用避孕工具,另一些国家则制定包括强制绝育在内的政策则制定包括强制绝育在内的政策我国把计划生育作为一项基本国策我国把计划生育作为一项基本国策但是在极贫穷的国家往往很难降低但是在极贫穷的国家往往很难降低人口增长,在这些国家里,大家庭人口增长,在这些国家里,大家庭可以作为社会保障体系,生养孩子可以作为社会保障体系,生养孩子家能保证父母老有所养家能保证父母老有所养49三、促进经济增长的政策储蓄率政策技术政策和人力资本制度变革50。












