
无机纳米抗菌剂文档资料.ppt
87页无机纳米抗菌材料1n抗菌材料n无机n纳米2背景 有害菌是影响人类健康和寿命的重要因素(1996,日本,大肠杆菌)n利用有益菌改善生活条件n抑制有害菌3n 抗菌材料的起源从远古时代人们就开始使用,人们发现用银和铜容器留存的水不宜变质,后来皇宫达贵富人吃饭时又习惯使用银筷子,民间又用银制成饰品佩带,我国民间很早就开始认识到银有抗菌作用4抗菌剂n抗菌剂是指能够在一定时间内,使某些微生物(细菌、真菌、酵母菌、藻类及病毒等)的生长或繁殖保持在必要水平以下的化学物质 n抗菌剂是具有抑菌和杀菌性能的物质或产品 56抗菌剂分类抗菌剂一般分为:n无机抗菌剂n有机抗菌剂n天然抗菌剂 7n一、无机抗菌剂一、无机抗菌剂n 金属系n 光催化系n 氧化物 8n一、无机抗菌剂一、无机抗菌剂n 金属系: 利用银、铜、锌等金属的抗菌能力,通过物理吸附、离子交换等方法,将银、铜、锌等金属(或其离子)固定在沸石、硅胶等多孔材料的表面制成抗菌剂,然后将其加入到相应的制品中即获得具有抗菌能力的材料n 9抗菌金属的杀菌能力:Ag≧≧Hg ≧ ≧ Co≧≧Ni﹥ ﹥Zn≧≧Cu=Fe﹥ ﹥Mn﹥ ﹥MgAg系抗菌材料应用历史悠久,对于细菌、病毒和真核微生物等均具有较好杀灭效果。
具有对人体细胞的低毒性、高的稳定性和低挥发性等优点10n 汞、镉、铅等金属也具有抗菌能力,但对人体有害;铜、镍、钴等离子带有颜色,将影响产品的美观,锌有一定的抗菌性,但其抗菌强度仅为银离子的1/1000 n 银离子抗菌剂在无机抗菌剂中占有主导地位 11n 银离子类抗菌剂的载体有磷酸锆、羟基磷灰石、沸石、陶瓷、活性炭等有时为了提高协同作用,再添加一些铜离子、锌离子12n光催化系: 二氧化钛----在光激发下束缚态的电子-空穴对变为激发态的电子、空穴并向晶粒表面扩散,电子、空穴达到表面的数量越多,反应活性越大,抗菌效果越好 ------抗菌陶瓷13n氧化物系: 氧化镁、氧化钙、氧化锌、氧化铜、钙制剂(扇贝、牡蛎) ----本身具有一定的抗菌性 此外还有磷酸二氢铵、碳酸锂等无机抗菌剂14有机抗菌剂n 有香草醛或乙基香草醛类化合物,常用于聚乙烯类食品包装膜中,起抗菌作用另外还有酰基苯胺类、咪唑类、噻唑类、异噻唑酮衍生物、季铵盐类、双呱类、酚类等 15n目前有机抗菌剂的安全性尚在研究中一般来说有机抗菌剂耐热性差些,容易水解,有效期短。
16天然抗菌剂天然抗菌剂n 天然抗菌剂主要来自天然植物的提取,如甲壳素、芥末、蓖麻油、山葵等,使用简便,但抗菌作用有限,耐热性较差,杀菌率低,不能广谱长效使用且数量很少 17无机抗菌剂耐热性持久性广谱性安全性不产生耐药性无机抗菌材料应用于日常生活用品中可有效抑制细菌滋生,维护人类健康预防为主应用:涂料,家应用:涂料,家电,化纤,陶瓷,电,化纤,陶瓷,塑料制品塑料制品无机抗菌剂优点无机抗菌剂优点18金属离子作用机理n 接触反应抗菌机理:银离子接触反应,造成微生物共有成分破坏或产生功能障碍当微量的银离子到达微生物细胞膜时,因后者带负电荷,依靠库仑引力,使两者牢固吸附,银离于穿透细胞壁进入胞内,并与SH基反应,使蛋白质凝固,破坏细胞合成酶的活性,细胞丧失分裂增殖能力而死亡银离子还能破坏微生物电子传输系统、呼吸系统和物质传输系统 19纳米抗菌剂n纳米金属n纳米氧化物n纳米化合物n包括把金属离子担载在纳米微球、纳米纤维、纳米管等载体上20纳米Ag材料具有大的比表面积,与传统抗菌剂相比具有更优异的性能,因而是无机纳米抗菌材料研究的热点21n氧化n分散n稳定n相容性存在问题22n1 形貌调控n2表面担载 Ag NPn3 表面修饰n4 内包覆n5 复合物研究手段23nAg 纳米微粒24 Ag 纳米微粒25Acta Phys-Chim Sin , 2011, 27, 722-728 26nAg 树枝晶J Mater Sci, 2011, 46(3): 839-845 27不同反应时间条件下制备的银纳米树枝晶的UV-vis图谱及TEM图: (a) 1 h, (b) 2 h, (c) 4 h, (d) 8 h, and (e) 12 h28Jingyu Liu, et al. ACS Nano, 2010nAg 微纳片29303132 chitosan-Ag NPsn表面修饰Ag 纳米微粒33Synergistic antibacterial effects ofβ-lactam antibiotic combined with silver nanoparticles, Nanotechnology 16 (2005) 1912–1917内酰胺内酰胺34羟氨苄青霉素35GSH-Ag NPsAngelo Taglietti, et al.Langmuir 2012, 28, 8140−814836Ag nps with different morphologiesnMaterials Science and Engineering C 33 (2013) 397–4043738表面担载 Ag NP39Min Lv, et al.Adv. Mater. 2010, 22, 5463–546740E.coli41SiO2@AgFe3O4@Ag42内包覆Ag NPsMonty Liong, et al.Adv. Mater. 2009, 21, 1–64344ab Ag/SiO2 复合纳米颗粒 MSEC 2013454647Gustavo Fuertes, et al.Langmuir 2011, 27, 2826–283348Silver-Coated Engineered Magnetic Nanoparticles Are Promising for the Success in the Fight against Antibacterial Resistance Threat, ACS Nano, 2012, 2656-26644950abAgBr/SiO2Materials Science and Engineering C, 2013,515253机理研究n离子机制n纳米效应54555657nThe presence of O2 or common ligands can differentially affect the toxicity of AgNPs vs Ag+, and underscore the importance of water chemistry in the mode of action of AgNPs58Cytotoxicity and Genotoxicity Genotoxicity of Silver Nanoparticles in Human CellsACS nano 2009, 279-29059Optical micrographs of U251 cells without any nanoparticle treatment (A) and cells treated with Ag-starch (200 g/mL) (B). Dark orange patches are visible on the cell surface of the treated cells and remained even after repeated washings.60Untreated cells showed no abnormalities (A), whereas cells treated with Ag-np showed large endosomes near the cell membrane with many nanoparticles inside (B). Electron micrographs showing lysosomes with nanoparticles inside (thick arrows) and scattered in cytoplasm (open arrow). Diamond arrow shows the presence of the nanoparticle in the nucleus (C). Magnified images of nanogroups showed that the cluster is composed of individual nanoparticles rather than clumps (D). Image shows endosomes in cytosol that are lodged in the nuclear membrane invaginations (E) and the presence of nanoparticles in mitochondria and on the nuclear membrane (F).61A possible mechanism of toxicity is proposedwhich involves disruption of the mitochondrial respiratory chain by Ag-np leading to production of ROS and interruption of ATP synthesis, which in turn cause DNA damage. It is anticipated that DNA damage is augmented by deposition, followed by interactions of Ag-np to the DNA leading to cell cycle arrest in the G2/M phase. 62Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles, Nano Lett. 2012, 12, 4271−427563646566nAgNP morphological properties known to affect antimicrobial activity are indirect effectors that primarily influence Ag+release. Accordingly, antibacterial activity could be controlled (and environmental impacts could be mitigated) by modulating Ag+ release, possibly through manipulation of oxygen availability, particle size, shape, and/or type of coating.67抗菌能力强价格便宜 应用成本低较高的化学稳定性和环境安全性 纳米铜作为抗菌剂的优势68具备抗菌性能的高分子基纳米复合材料添加剂如聚氨酯如聚氨酯/M/M、聚丙烯腈、聚丙烯腈/M/M,,(M=Cu(M=Cu、、Ag)Ag)纺纺丝工艺中进行添加,制备抗菌纤维。
丝工艺中进行添加,制备抗菌纤维聚氨酯和聚丙烯腈单体Cu NPS抗菌纤维纺丝引发聚合偶联剂表面改性6970717273chitosan – copper ab74abcddifferent reaction temperatures. (a) 40 ℃; (b) 60 ℃; (c) 80 ℃; (d) 100 ℃ 75acdbdifferent dosage of CM-chitosan. (a) 0 g; (b) 0.05 g; (c) 0.1 g; (d) 0.5 g. 767778 (a) S. aureus; (b) E. coli. 7980 蛋白质分离81 Ferroferric oxide/L-cysteine magnetic nanospheres forcapturing histidine-tagged proteins,J. Mater. Chem. B, 20138283baFig. 4 SDS-PAGE analysis of the purified recombinant TRX proteins. (a) Lane 1, marker; lane 2, E. coli lysate; lane 3–6, the fractions eluted from NSs with different thiol group densities (lane 3, Fe3O4/Cys, lane 4–6, Fig. 3a–c). (b) Lane 1, marker;lane 2, the fraction washed off from the commercial Ni2+-NTA column; lane 3–5, the fractions washed off from Fe3O4/Cys-Ni2+ NSs with different amounts of imidazole (lane 3, 3.0 mg; lane 4, 6.0 mg; lane 5, 12.0 mg).84thiol-functionalized hollow silica ba858687。
