
P波入射反射、透射系数推导.doc
12页P 波入射 Zoeppritz 方程的推导根据弹性力学的假设,介质是均匀各向同性的无限大介质,平面波是一种最简单的波动形式,其以波面为平面的形式在介质中传播,即平面波在垂直于波传播的任一平面上,各点的振动是同相的,实际上并不存在激发平面波的震源,所以它是一个数学抽象了的波动过程点震源激发的球面波向四面八方传播,当其距震源足够远时,在这个地方研究一个局部的等相位面,可以将其看成一个平面波在理论上,任何类型的波都可以用平面波的合成形式来表示,所以平面波是波动现象中最基本的形式,也是理论研究和实际应用的基础在地震勘探中,讨论在两种不同的介质分界面上的波的传播现象是十分重要的一般分为两种情况进行讨论,第一种,我们所研究的地球介质按其物性变化是分层的,具有层装结构因此,讨论两种弹性性质不同的介质分界面上波的传播情况第二种,地球表面是一个特殊的分界面,它将无限介质划分为两个半空间地面以上的空气介质,其密度与地面以下的岩石或海平面以下的海水层及岩石层的密度相比可以忽略因此,地球表面可以看成是一个弹性半空间表面,称为自由面,其上的应力作用为零根据本文所讨论的地质模型所涉及到的地质灾害,我们只讨论波在第一种介质分界面情况下波的传播,即平面波在弹性分界面上的反射与透射。
1.1 波函数设有一平面谐纵波入射到两种半无限弹性介质的分界面上在这种情况下,波不仅会折回到入射介质中传播,而且会透射到另一种介质中传播;即同时存在反射波和透射射波反射波和透射波中都包含纵波和横波两种成份P 波在介质分界面上的反射和透射情况如图所示:关于位函数我们首先看:沿任意方向传播的平面波设 是一个任意取定的单位方向N矢量 Nlimjnk(1)下面来看沿 方向的平面波,或称三维平面波的波函数形式三维平面波的波函数 满足 f三维波动方程,即: 2221fffxyzVt(2)这里我们通过和一维平面波函数类比,可以得出三维平面波函数的形式我们知道,在一维平面波的情况下,空间任意一点 上的波函数值只取决于 于是沿 正方向传,xyzx播的平面波的波函数为 其中的 实际上是从原点至 点所在波1(,)()ftfVtx,yz面的垂直距离,即 (一维平面波的传播方向的单位矢量为 在三维0dxyz Ni平面波情况下,这一距离应为 因此,将一维平面波函数中的 以lmnzx代替应该可以得到三维平面波的波函数)即:lxmynz1(,)()fxyztflxyzVt(3)同一维平面波一样,式中的 为波沿 方向的传播时间。
tN代表一个沿 的正方向传播的平面波同理,1()flxmynzV代表一个沿 的负方向传播的平面波,在一般情况下,1,)()ztflt沿任意方向 传播的平面波的波函数可写成:N(4)11(,)()()fxyztflxmynzVtflxmynzVt1.2 平面简谐波:平面简谐波是是波函数为简谐形式的平面波,也是数学上最容易处理的一种波因此,在研究波的传播问题时经常使用简谐波假定沿 正方向传播的平面简谐波的波函数可写成:x0(,)cos()ftfkxVt(5)或0(,)sin()fxtfkxt(6)上面两式分别代表的是余弦形式和正弦形式的平面简谐波我们最常使用的是指数形式的平面简谐波 ()0(,)jkxVtftfe(7)通过取上式的实部或虚部即可得到余弦形式或正弦形式的平面简谐波的波函数上面各波函数中的 称为波的振幅,因为波函数值总是在 和 之间变化0f 0f下面讨论波函数中其他各量的意义及它们之间的关系为此,首先“固定”时间变量以考查波剖面的情况不难验证,t2(,)(,)fxtfxtk(8)这表明,波剖面的值每隔 距离重复一次。
因此我们将这个量称为波长,记为 ,同时,把 2k2k称为波数可见波数就是 距离内所含的波长个数再“固定”空间变量 以考查振动图的情况容易看出,x2(,)(,)fxtftkV(9)这说明,振动图的值每隔 时间重复一次因此将这个量称作周期,记为 ,T2TkV由此可见,周期即为波传播一个波长距离所用的时间另外,其中 和 分别为频率和圆频率1T2利用上面得到的各量之间的关系,可将平面简谐波的波函数写成如下等价形式:2()()00(,)jxVtjkxVtfxtfefe()() (2)jtjkt jkxt2()0xjtfe(10)沿任意方向 传播的平面简谐波的波函数可写为Nlimjnk()0(,)jlxyzVtfxyztfe()0xyzjkVtfe(11)因此二维平面波的波函数可以写成:= (,)fxyzt()xyjktAe(12)我们可以写出入射 P 波、反射波 P 波、反射 SV 波、透射 P 波和透射 SV 波的位函数:(1)()(1)xzjkwtAe(13)(2)()(2)xzjkwt(14)(15)(3)()(3)xzjkwtAe(16)(4)()(4)xzjt(17)(5)()(5)xzjkwte上式中 , ,1(1)(2)/sinxpv1(3)/sinxkwv, 2(4) 'k2(5)'s(18)且有 (1)(2)(3)(4)(5)xxxkkk(19)由此可得反射和透射定律(斯奈尔定律)如下:1122' '/sin/si/sin/sippvvvZ XP(A1) SV(A3)P2SV(A5)P(A4)β βα β 'α ’介 质 1( λ 1μ ρ 1 Pv s1)介 质 2( λ 2μ ρ 2 v s2) α(20)另外,由图可见: , , ,1(1)/coszpkwv1(2)/coszpkwv1(3)/coszkwv,2(4)'z 2(5)'zs在介质 I 中,总的位函数为 (1)() (2)()(1)(2)xz xzjkwtjkwtAeAe(21)(3)()(3)1xzjkwt(22)在介质 中,总的位函数为 (4)()(4)2xzjkwtAe(23)(5)()(5)2xzjkwt(24)1.3 边界条件我们知道,介质分界面处的边界条件为位移连续和应力连续。
因此,可写出本问题的边界条件如下:在 Z=0 处 1212()zzxxuw(25)(1)位移连续:地震波在传播过程中质点振动的位移 可以分解为其标量位的梯度与与其矢量位的旋u度之和的形式,有: ugradot(26)同时 uivjk(27) 设 xyzij(28)将式(26)按梯度和旋度公式展开,得到 的 3 个分量为:uyzxzyxuvwz(29)研究空间传播的平面波时,一般情况下选择直角坐标系,可使得波前面与一个坐标轴(如 轴)平行,此时方向余弦 这样,波前面在 轴方向上无限延伸,波函ycos0y数与坐标 无关,于是有 y此时,式(29)中对 的导数项变为 0,则式(29)变为:yxzyuvw(30)这说明位移分量可以分为两部分其中一部分时位于 平面内的位移分量 和 ,xzuw它们只与 和 有关,含有 波和 波成份;另一部分是垂直于 平面的位移分量yPSVxz,它只与 和 有关。
且只含有 波成份这一结果表明,可将 波和 波作为vxzHPSV一组与 波分开来处理我们在讨论 波和 波时使用位函数 和 然后由(30)式SHz过渡到位移为简单起见,记 yuxzw(31)和 满足下面的波动方程: 22221psVtt(32) (2)应力连续首先由虎克定律有:zze(33)zxz(34)虎克定律阐述了应力和应变的关系再看应变的定义式:zwe(35)zxuz(36) 应变的定义式阐述了应变和位移的关系再由位移和位移位的关系式:xzuvw(37) 体应变的关系式:xyzuvexyz(38)2psv(39) 2sv(40)由以上各式可得到:2 2zzps suvwevvxyzz将(37)式代入上式得到: 22 22 xzzpsvxzyxz 2svzx式中: ,223()xyz223()zxyy故 222zps svvxzzx而 22xy0y故2z所以 222zpssvvzx而 (波函数满足波动方程)221pVt故 222sz spvvtzx(41) ()zxzwuuexz222()svxzxz= 22()sv(42)1.4 反射系数和透射系数以下的工作是使波函数满足上面的边界条件,为此将(21)~(24)式代入(25)式,并整理。
首先代(25)式的第一式有: (1)() (2)() (3)()(1) (2) (3)xxz xz xzjktjktjktx zAeAeAe(4)() (5)()(4) (5)xz xzjtjtz由于 故上式变为:(1)(2)(3)()()xxxkkk(1) (2) (3) (4) (5)z z z z zj j j jkjkx xAeeAeeAe将 , , ,1()(2)/sinpkv2(4)'/sinxpkv1(3)/coszv,并且 代入上式:2(5)'/cozs z=01 1 11 1 1. cos. cos.23ininp pwwwjzjzjzv v vAeAeAe''2 22 2cos.cos.' '45ip jzjzvvp(43)1122' '345in 1()ssincosp pAAAvvvv代入(25)式的二式有: (1)() (2)() 。
