
2022年新高考湖北物理高考真题(解析版).docx
11页湖北省2022年普通高中学业水平等级考试物理一、选择题:本题共11小题,每小题4分,共44分在每小题给出的四个选项中,第1~7题只有一项符合题目要求,第8~11题有多项符合题目要求全部选对的得4分,选对但不全的得2分,有选错的得0分1. 上世纪四十年代初,我国科学家王淦昌先生首先提出证明中微子存在实验方案:如果静止原子核俘获核外K层电子e,可生成一个新原子核X,并放出中微子νe,即 根据核反应后原子核X的动能和动量,可以间接测量中微子的能量和动量,进而确定中微子的存在下列说法正确的是( )A. 原子核X是 B. 核反应前后的总质子数不变C. 核反应前后总质量数不同 D. 中微子的电荷量与电子的相同【答案】A【解析】AC.根据质量数守恒和电荷数守恒有,X的质量数为7,电荷数为3,可知原子核X是,A正确、C错误;B.由选项A可知,原子核X是,则核反应方程为 + → + ,则反应前的总质子数为4,反应后的总质子数为3,B错误;D.中微子不带电,则中微子的电荷量与电子的不相同,D错误2. 2022年5月,我国成功完成了天舟四号货运飞船与空间站的对接,形成的组合体在地球引力作用下绕地球做圆周运动,周期约90分钟。
下列说法正确的是( )A. 组合体中的货物处于超重状态B. 组合体的速度大小略大于第一宇宙速度C. 组合体的角速度大小比地球同步卫星的大D. 组合体的加速度大小比地球同步卫星的小【答案】C【解析】A.组合体在天上只受万有引力的作用,则组合体中的货物处于失重状态,A错误;B.由题知组合体在地球引力作用下绕地球做圆周运动,而第一宇宙速度为最大的环绕速度,则组合体的速度大小不可能大于第一宇宙速度,B错误;C.已知同步卫星的周期为24h,则根据角速度和周期的关系有由于T同 > T组合体,则组合体的角速度大小比地球同步卫星的大,C正确;D.由题知组合体在地球引力作用下绕地球做圆周运动,有整理有由于T同 > T组合体,则r同 > r组合体,且同步卫星和组合体在天上有则有a同 < a组合体D错误3. 一定质量的理想气体由状态a变为状态c,其过程如p—V图中a→c直线段所示,状态b对应该线段的中点下列说法正确的是( )A. a→b是等温过程B. a→b过程中气体吸热C. a→c过程中状态b的温度最低D. a→c过程中外界对气体做正功【答案】B【解析】AB.根据理想气体的状态方程可知a→b气体温度升高,内能增加,且体积增大气体对外界做功,则W < 0,由热力学第一定律DU = W + Q可知a→b过程中气体吸热,A错误、B正确;C.根据理想气体的状态方程可知,p—V图像的坐标值的乘积反映温度,a状态和c状态的坐标值的乘积相等,而中间状态的坐标值乘积更大,a→c过程的温度先升高后降低,且状态b的温度最高,C错误;D.a→c过程气体体积增大,外界对气体做负功,D错误。
故选B4. 密立根油滴实验装置如图所示,两块水平放置的金属板分别与电源的正负极相接,板间产生匀强电场用一个喷雾器把密度相同的许多油滴从上板中间的小孔喷入电场,油滴从喷口喷出时由于摩擦而带电金属板间电势差为U时,电荷量为q、半径为r的球状油滴在板间保持静止若仅将金属板间电势差调整为2U,则在板间能保持静止的球状油滴所带电荷量和半径可以为( )A. q,r B. 2q,r C. 2q,2r D. 4q,2r【答案】D【解析】初始状态下,液滴处于静止状态时,满足即AB.当电势差调整为2U时,若液滴的半径不变,则满足可得AB错误;CD.当电势差调整为2U时,若液滴的半径变为2r时,则满足可得C错误,D正确5. 如图所示,质量分别为m和2m的小物块Р和Q,用轻质弹簧连接后放在水平地面上,Р通过一根水平轻绳连接到墙上P的下表面光滑,Q与地面间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力用水平拉力将Q向右缓慢拉开一段距离,撤去拉力后,Q恰好能保持静止弹簧形变始终在弹性限度内,弹簧的劲度系数为k,重力加速度大小为g若剪断轻绳,Р在随后的运动过程中相对于其初始位置的最大位移大小为( )A. B. C. D. 【答案】C【解析】Q恰好能保持静止时,设弹簧的伸长量为x,满足若剪断轻绳后,物块P与弹簧组成的系统机械能守恒,弹簧的最大压缩量也为x,因此Р相对于其初始位置的最大位移大小为故选C。
6. 我国高铁技术全球领先,乘高铁极大节省了出行时间假设两火车站W和G间的铁路里程为1080 km,W和G之间还均匀分布了4个车站列车从W站始发,经停4站后到达终点站G设普通列车的最高速度为108 km/h,高铁列车的最高速度为324 km/h若普通列车和高铁列车在进站和出站过程中,加速度大小均为0.5 m/s2,其余行驶时间内保持各自的最高速度匀速运动,两种列车在每个车站停车时间相同,则从W到G乘高铁列车出行比乘普通列车节省的时间为( )A. 6小时25分钟 B. 6小时30分钟C. 6小时35分钟 D. 6小时40分钟【答案】B【解析】108 km/h=30m/s,324 km/h=90m/s由于中间4个站均匀分布,因此节省的时间相当于在任意相邻两站间节省的时间的5倍为总的节省时间,相邻两站间的距离普通列车加速时间加速过程的位移根据对称性可知加速与减速位移相等,可得匀速运动的时间同理高铁列车加速时间加速过程的位移根据对称性可知加速与减速位移相等,可得匀速运动的时间相邻两站间节省的时间因此总的节省时间故选B7. 一质点做曲线运动,在前一段时间内速度大小由v增大到2v,在随后的一段时间内速度大小由2v增大到5v。
前后两段时间内,合外力对质点做功分别为W1和W2,合外力的冲量大小分别为I1和I2下列关系式一定成立的是( )A. , B. ,C. , D. ,【答案】D【解析】根据动能定理可知可得由于速度是矢量,具有方向,当初、末速度方向相同时,动量变化量最小,方向相反时,动量变化量最大,因此冲量的大小范围是比较可得一定成立8. 在如图所示的平面内,分界线SP将宽度为L的矩形区域分成两部分,一部分充满方向垂直于纸面向外的匀强磁场,另一部分充满方向垂直于纸面向里的匀强磁场,磁感应强度大小均为B,SP与磁场左右边界垂直离子源从S处射入速度大小不同的正离子,离子入射方向与磁场方向垂直且与SP成30°角已知离子比荷为k,不计重力若离子从Р点射出,设出射方向与入射方向的夹角为θ,则离子的入射速度和对应θ角的可能组合为( )A. kBL,0° B. kBL,0° C. kBL,60° D. 2kBL,60°【答案】BC【解析】若粒子通过下部分磁场直接到达P点,如图根据几何关系则有可得根据对称性可知出射速度与SP成30°角向上,故出射方向与入射方向夹角为θ=60°当粒子上下均经历一次时,如图因为上下磁感应强度均为B,则根据对称性有根据洛伦兹力提供向心力有可得此时出射方向与入射方向相同,即出射方向与入射方向的夹角为θ=0°。
通过以上分析可知当粒子从下部分磁场射出时,需满足(n=1,2,3……)此时出射方向与入射方向的夹角为θ=60°;当粒子从上部分磁场射出时,需满足(n=1,2,3……)此时出射方向与入射方向的夹角为θ=0°故可知BC正确,AD错误故选BC9. 近年来,基于变压器原理的无线充电技术得到了广泛应用,其简化的充电原理图如图所示发射线圈的输入电压为220V、匝数为1100匝,接收线圈的匝数为50匝若工作状态下,穿过接收线圈的磁通量约为发射线圈的80%,忽略其它损耗,下列说法正确的是( )A. 接收线圈的输出电压约为8 VB. 接收线圈与发射线圈中电流之比约为22:1C. 发射线圈与接收线圈中交变电流的频率相同D. 穿过发射线圈的磁通量变化率与穿过接收线圈的相同【答案】AC【解析】A.根据可得接收线圈的输出电压约为U2=8V;B.根据可得故B错误;C.变压器是不改变其交变电流的频率的,故C正确;D.由于穿过发射线圈磁通量与穿过接收线圈的磁通量大小不相同,所以穿过发射线圈的磁通量变化率与穿过接收线圈的不相同,故D错误故选AC10. 如图所示,一带电粒子以初速度v0沿x轴正方向从坐标原点О射入,并经过点P(a>0,b>0)。
若上述过程仅由方向平行于y轴的匀强电场实现,粒子从О到Р运动的时间为t1,到达Р点的动能为Ek1若上述过程仅由方向垂直于纸面的匀强磁场实现,粒子从O到Р运动的时间为t2,到达Р点的动能为Ek2下列关系式正确的是·( )A. t1
已知导体棒加速时,加速度的最大值为g;减速时,加速度的最大值为g,其中g为重力加速度大小下列说法正确的是( )A. 棒与导轨间的动摩擦因数为B. 棒与导轨间的动摩擦因数为C. 加速阶段加速度大小最大时,磁场方向斜向下,θ=60°D. 减速阶段加速度大小最大时,磁场方向斜向上,θ=150°【答案】BC【解析】设磁场方向与水平方向夹角为θ1,θ1<90°;当导体棒加速且加速度最大时,合力向右最大,根据左手定则和受力分析可知安培力应该斜向右上方,磁场方向斜向右下方,此时有令根据数学知识可得则有同理磁场方向与水平方向夹角为θ2,θ2<90°,当导体棒减速,且加速度最大时,合力向左最大,根据左手定则和受力分析可知安培力应该斜向左下方,磁场方向斜向左上方,此时有有所以有当加速或减速加速度分别最大时,不等式均取等于,联立可得带入可得α=30°,此时加速阶段加速度大小最大时,磁场方向斜向右下方,有减速阶段加速度大小最大时,磁场方向斜向左上方,有故BC正确,AD错误故选BC二、非选择题:本题共5小题共56分12. 某同学设计了一个用拉力传感器验证机械能守恒定律的实验一根轻绳一端连接固定的拉力传感器,另一端连接小钢球,如图甲所示。
拉起小钢球至某一位置由静止释放,使小钢球在竖直平面内摆动,记录钢球摆动过程中拉力传感器示数的最大值和最小值改变小钢球的初始释放位置,重复上述过程根据测量数。












