好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

六年级数学试卷:《最短路线》的相关练习题.doc

5页
  • 卖家[上传人]:猪子****y
  • 文档编号:126927123
  • 上传时间:2020-03-28
  • 文档格式:DOC
  • 文档大小:46.50KB
  • / 5 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 六年级数学试卷:《最短路线》的相关练习题  在学习几何知识时,同学们已经学过如下两个结论:(1)连结两点的所有线中,直线段是最短的;(2)直线外的一个定点与直线上的各点的连线以垂线为最短.利用这两个结论可以解决许多实际生活中求最短路线的问题.例1 甲、乙两村之间隔一条河,如图131.现在要在小河上架一座桥,使得这两村之间的行程最短,桥应修在何处?分析:设甲、乙两村分别用点a、b表示.要在河上架桥,关键是要选取一个最正确建桥的位置,使得从甲村出发经过桥到乙村的路程最短.即从甲村到甲村河边的桥头的距离加上桥长(相当于河的宽度),再加上乙村到乙村河边的桥头的距离尽可能短,这是一个求最短折线的问题.直接找出这条折线很困难,能否可以把它转化为直线问题呢?由于河的宽度不变,不论桥修在哪里,桥都是必经之路,且桥长相当于河宽,是一个定值,所以可以预先把这段距离扣除,只要使两镇到河边桥头的距离最短就可以了.所谓预先将桥长扣除,就是假设先走完桥长,即先把桥平移到甲村,先过了桥,到c点,如图132,找出c到b的最短路线,实际上求最短折线问题转化为直线问题.解:如图132.过a点作河岸的垂线,在垂线上截取ac的长等于河宽.连bc交与乙村的河岸于f点,作ef垂直于河的另一岸于e点,那么ef为架桥的位置,也就是ae+ef+fb是两村的最短路线.例2 如图133,a、b两个学校都在公路的同侧.想在这两校的附近的公路上建一个汽车站,要求车站到两个学校的距离之和最小,应该把车站建在哪里?分析:车站建在哪里,使得a到车站与b到车站的距离之和最小,仍然是求最短折线问题,同例1一样关键在于转化成直线问题就好办了.采用轴对称(直线对称)作法.解:作点b关于公路(将公路看作是一条直线)的对称点b,如图134,即过b点作公路(直线)的垂线交直线于o,并延长bo到b,使bo=ob.连结ab交直线于点e,连be,那么车站应建在e处,并且折线aeb为最短.为什么这条折线是最短的呢?分两步说明:(1)因为b与b关于直线对称,根据对称点的性质知,对称轴上的点到两个对称点的距离相等,有be=be,所以ab=ae+eb=ae+eb(2)设e是直线上不同于e的任意一点,如图135,连结ae、eb、eb,可得ae+eb=ae+ebab(两点之间线段最短)分享到: 新浪微博 腾讯微博 空间 好友 人人网 百度贴吧 复制网址上式说明,如果在e点以外的任意一点建车站,所行的路程都大于折线aeb.所以折线aeb最短.例3 如图136,河流ef与公路fd所夹的角是一个锐角,某公司a在锐角efd内.现在要在河边建一个码头,在公路边修建一个仓库,工人们从公司出发,先到河边的码头卸货,再把货物转运到公路边的仓库里去,然后返回到a处,问仓库、码头各应建在何处,使工人们所行的路程最短.分析:工人们从a出发先到河边码头,再到公路的仓库,然后回到a处,恰好走一个三角形,现在要求三角形的另外两个顶点分别建在河岸与公路的什么位置能使这个三角形的三边之和为最小,利用轴对称原理作图.解:过a分别作河岸、公路的对称点a、a,如图137,连结aa,交河岸于m,交公路于n,那么三角形amn各边之和等于直线aa的长度,所以仓库建在n处,码头建在m处,使工人们所行的路程最短.例4 如图138是一个长、宽、高分别为4分米、2分米、1分米的长方体纸盒.一只蚂蚁要从a点出发在纸盒表面上爬到b点运送食物,求蚂蚁行走的最短路程.分析:因为是在长方体的表面爬行,求的是立体图形上的最短路线问题,往往可以转化为平面上的最短路线问题.将蚂蚁爬行经过的两个面展开在同一平面上,如图139,在展开图中,ab间的最短路线是连结这两点的直线段,但要注意,蚂蚁可沿几条路线到达b点,需对它们进行比较.解:蚂蚁从a点出发,到b点,有三条路线可以选择:(1)从a点出发,经过上底面然后进入前侧面到达b点, 将这两个平面展开在同一平面上,这时a、b间的最短路线就是连线ab,如图139(1),ab是直角三角形abc的斜边,根据勾股定理,ab2=ac2+bc2=(1+2)2+42=25(2)从a点出发,经过左侧面,然后进入前侧面到达b点,将这两个面展开在同一平面上,如图139(2),同理ab2=22+(1+4)2=29(3)从a点出发,经过上底面,然后进入右侧面到达b点,将这两个面展开在同一平面上,如图139(3),得ab2=(2+4)2+12=37比较这三条路线,25最小,所以蚂蚁按图139(1)爬行的路线最短,最短路程为5分米.例5 如图1310,在圆柱形的木桶外,有一个小甲虫要从桶外的a点爬到桶内的b点.a点到桶口c点的距离为14厘米,b点到桶口d点的距离是10厘米,而c、d两点之间的弧长是7厘米.如果小甲虫爬行的是最短路线,应该怎么走?路程是多少?分析:先设想将木桶的圆柱展开成矩形平面,如图1311,由于b点在桶内,不便于作图,利用轴对称原理,作点b关于直线cd的对称点b,这就可以用b代替b,从而找出最短路线.解:如图1311,将圆柱体侧面展成平面图形.作点b关于直线cd的对称点b,连结ab,ab是a、b两点间的最短距离,与桶口边交于o点,那么ob=ob,ab=ao+ob,那么a、b之间的最短距离就是ao+ob,所以小甲虫在桶外爬到o点后,再向桶内的b点爬去,这就是小甲虫爬行的最短路线.延长ac到e,使ce=bd,因为△aeb是直角三角形,ab是斜边,eb=cd=7厘米,ae=14+10=24(厘米),根据勾股定理:唐宋或更早之前,针对〝经学〞〝律学〞〝算学〞和〝书学〞各科目,其相应传授者称为〝博士〞,这与当今〝博士〞含义已经相去甚远。

      而对那些特别讲授〝武事〞或讲解〝经籍〞者,又称〝讲师〞〝教授〞和〝助教〞均原为学官称谓前者始于宋,乃〝宗学〞〝律学〞〝医学〞〝武学〞等科目的讲授者;而后者那么于西晋武帝时代即已设立了,主要协助国子、博士培养生徒〝助教〞在古代不仅要作入流的学问,其教书育人的职责也十分明晰唐代国子学、太学等所设之〝助教〞一席,也是当朝打眼的学官至明清两代,只设国子监〔国子学〕一科的〝助教〞,其身价不谓显赫,也称得上朝廷要员至此,无论是〝博士〞〝讲师〞,还是〝教授〞〝助教〞,其今日教师应具有的基本概念都具有了ab2=ae2+eb2=242+72=625课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分为什么?还是没有彻底〝记死〞的缘故要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一那么名言警句即可可以写在后黑板的〝积累专栏〞上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等这样,一年就可记300多条成语、300多那么名言警句,日积月累,终究会成为一笔不小的财富这些成语典故〝贮藏〞在学生脑中,自然会出口成章,写作时便会随心所欲地〝提取〞出来,使文章增色添辉。

      所以ab=25(厘米)宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为〝教谕〞至元明清之县学一律循之不变明朝入选翰林院的进士之师称〝教习〞到清末,学堂兴起,各科教师仍沿用〝教习〞一称其实〝教谕〞在明清时还有学官一意,即主管县一级的教育生员而相应府和州掌管教育生员者那么谓〝教授〞和〝学正〞〝教授〞〝学正〞和〝教谕〞的副手一律称〝训导〞于民间,特别是汉代以后,对于在〝校〞或〝学〞中传授经学者也称为〝经师〞在一些特定的讲学场合,比如书院、皇室,也称教师为〝院长、西席、讲席〞等即小甲虫爬行的最短路程是25厘米.。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.