好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

LED结构及原理讲述.ppt

73页
  • 卖家[上传人]:汽***
  • 文档编号:589150352
  • 上传时间:2024-09-10
  • 文档格式:PPT
  • 文档大小:5.05MB
  • / 73 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • LEDLED结构及原理讲述结构及原理讲述 也是翻过来top-down,InP为基板,1.35eV,也会吸可见光,但图中为红外LED如何看出红外:InGaAsP:1.33-1.5eV,发光层是narrow bandgap材料,上下2个InP都是large bandgap材料,标准的双异质结,无需再衬底挖洞,让光出来 没有翻过来,没有用到异质结构,简单的pn型,GaP:N是发光层,GaP:简介带隙,效率不高,2.26eV,接近绿光 边射型LED,红光结构,双异质结,发光层为narrow bandgap材料,夹在2个large bandgap材料之间,边射型发光不会太强,大部分光被基板吸掉1980年以前) 高亮度可见光LED四元化合物半导体制作方法:n-GaAs做基板,Si较少用,会有晶格不匹配问题;n-AlInP中掺铝,带隙扩大,发光层是MQW结构,p-AlGaP(MgII族),II族元素掺入ⅢⅤ族元素中,形成p型半导体;两边为为大bandgap材料, 蓝绿光LED通常用2种基板:蓝宝石(有杂质时呈现蓝色,无杂质时是透明的),其bandgap很大,因此可见光不会被它吸收掉制作方法:在外延生长之前,需使用一项非常重要的技术,缓冲层技术(buffer layer),通常要在约500度低温生长,而非1000度以上高温。

      这一层质量并不好,但作用很重要再长一层n型GaN,随后是MQW结构做发光层,再长一层p型GaN,再接上电极(contact),N型电极不能接在下面,必须有两个front contact,原因? 制造过程结构特点(电极)好处是什么 不用牺牲一部分发光区域,SiC基板导电有什么问题 早期红黄光LEDGaP/AlGaInP/GaAs absorbing substrate:GaAs 5-10um的薄膜20-50um光到下面后,会被金属反弹回来VPE(Vaporous phase epitaxy) 气相外延生长 None absorbing red yellow LED结构,假设是GaP基板不加窗口层,直接把p-type contact electrode接在上面 产生问题:接触电极很薄,电流来不及散开,直接向下流 电流不散开,集中在金属电极的下面,电流密度会非常高,致使光电转换效率下降(经验:物理曲线数值增大到一定程度,就会趋缓,达到饱和)原因:可能是热效应,也可能是其它饱和效应,,使光电转换效率开始衰竭因此,不希望在某个特定区域,电流密度太高 如果电流无法散开,过于集中在金属电极区域,会使绝大部分的发光也集中在金属电极区域下方,当光打到金属接触区域时,会被挡住,使光线无法散开。

      如何使光能够散开? with window layer 加一层很厚的窗口层,其厚度是发光层厚度的十倍、甚至百倍因为这一层很厚,电流有足够的机会散开散开之后的作用:1、使各点的电流密度降低,光电转换效率就可以提高;2、使发光区域变大,被上面金属挡住的区域所占比例就会减小,LED发光效率就会有较大提升 High Brightness Blue LEDs 蓝宝石基板、低温生长缓冲层(累晶质量不太好)、高品质n-GaN、大bandgap材料、中间夹MQW结构(InGaN是narrow bandgap区域,GaN是large bandgap区域,长5-10个周期)、再长large bandgap p型层 n-electrode要吃掉一部分累晶层区域,直到n型区域,将n型金属接触做在上面 此结构遇到一个问题:电流散不开,怎么办?电流都集中在p-contact下面,发出的光都在p-contact下面,是否可以加窗口层? 无法加很厚的窗口层原因:蓝宝石基板和GaN晶格不匹配,在1000度长完晶后,降温过程中,外延层开始弯曲,因此,上面的累晶层不能长太厚,事实上,其总厚度大约在5um以下,蓝宝石的厚度在大约300-400um之间;如果累晶层厚度超过10或20um,冷却后,弯到一定程度,累晶层就会裂开,因此,无法长很厚的GaN 窗口层,要解决此问题,必须想其他办法。

      p-contact下面长一层特殊材料:会导电,又能透过可见光2种可能选择:A、仍然用金属,只是把金属变得很薄,但金属变薄后,出现新问题,其导电能力会迅速下降,电流散开的能力会随之降低B、ITO(透明导电材料) High Brightness LEDs on CIE Chromaticity Diagram((RGBLED都包括)都包括)高亮度高亮度LED在色坐标图中的标准位置在色坐标图中的标准位置 R,G,B三色LED的光谱分布图:红光LED的半高宽,即波长分布最窄;绿光LED半高宽较宽;蓝光LED的半高宽介于二者之间 因为不是很理想的单一波长的光,因此不会刚好落在色坐标图边缘上红光的半高宽小,离边缘近;绿光偏向中间,525、505、498nm,;另外,设计色坐标时,绿光被刻意拉大也是一个原因;蓝光也比较靠近边缘626,615,605,590……..为λp:最高强度所对应的波长 LED芯片介绍1 1、、 LED芯片分类介绍2 2、、 不同结构不同结构LED芯片的性能简介3 3、垂直结构、垂直结构LEDLED芯片的制成芯片的制成 Led芯片的结构  LED芯片有两种基本结构,水平结构(Lateral)和垂直结构(Vertical)。

      横向结构LED芯片的两个电极在LED芯片的同一侧,电流在n-和p-类型限制层中横向流动不等的距离垂直结构的LED芯片的两个电极分别在LED外延层的两侧,由于图形化电极和全部的p-类型限制层作为第二电极,使得电流几乎全部垂直流过LED外延层,极少横向流动的电流,可以改善平面结构的电流分布问题,提高发光效率,也可以解决P极的遮光问题,提升LED的发光面积 制造垂直结构LED芯片技术主要有三种方法:一、采用碳化硅基板生长GaN薄膜,优点是在相同操作电流条件下, 光衰少、寿命长,不足处是硅基板会吸光 二、利用芯片黏合及剥离技术制造优点是光衰少、寿命长,不足 处是须对LED表面进行处理以提高发光效率 三、是采用异质基板如硅基板成长氮化镓LED磊晶层,优点是散热 好、易加工 目前主流Led结构剖析 两种芯片发光形式 水平型结构Led出光路线 垂直型芯片性能介绍 由于当前芯片主要是垂直型的和水平型的两种 垂直型产品以CREE芯片为代表特点主要是: 光效高:最高可达 161 lm\w,节能; 电压低:蓝光在2.9~3.3V; 热阻小:芯片本身的热阻小于 1 ‘C/W; 亮度高:由于采用垂直结构,电流垂直流动,电流密度均匀, 耐冲击型强;同一尺寸芯片,发光面宽,亮度高。

      光型好:85%以上光从正面发出,易封装,好配光; 唯一的缺点就是:不方便集成封装若要集成封装,芯片需 做特殊处理 我公司全部采用垂直结构的芯片 水平型芯片性能介绍 水平型产品以普瑞芯片为代表,芯片的主要特点是: 光效一般:最高在 100 lm\w左右; 电压高:蓝光在3.4~4V; 热阻高:使用蓝宝石衬底导热性差芯片本身的热阻在 4~6 ‘C/W; 亮度一般:由于采用水平结构,电流横向动,电流密度不均,容易局 部烧坏;为弥补这一缺陷,在芯片的上表面做ITO.ITO将以 减少出光为代价同一尺寸芯片,发光面窄,亮度低 光利用率低:65%左右的光从正面发出,35%的光从侧面发出,靠反射来 达到出光,利用率低 唯一的优点就是:便于集成封装不过,它也是缺点,由于没解决好散 热,所以集成封装只有加速它的衰减,不可取 垂直芯片的制成 垂直芯片剖析 垂直LED制造的方法 制造垂直结构LED芯片有两种基本方法: 一、剥离生长衬底; 二、不剥离生长衬底 。

      其中生长在砷化镓生长衬底上的垂直结构GaP基LED芯片有两种结构: 一、不剥离导电砷化镓生长衬底:在导电砷化镓生长衬底上层 迭导电DBR反射层,生长 GaP 基LED外延层在导电DBR反 射层上  二、剥离砷化镓生长衬底:层迭反射层在GaP基LED外延层上, 键合导电支持衬底,剥离砷化镓衬底导电支持衬底包括, 砷化镓衬底,磷化镓衬底,硅衬底,金属及合金等 四元DBR材料 MQW LED器件结构示意图 左:p-type large bandgap 材料右:n-type large bandgap 材料有源层:narrow badgap 材料,通常掺杂浓度很低 电子和空穴分别从左右两端进入有源层,其扩散长度会比有源层厚度(如0.2—2um)大很多,表示载流子会很均匀地分布在narrow bandgap 材料中; 由于电中性的要求,因此额外的电子和空穴数应该相等(△n=△p):通常有源层掺杂浓度很低,相对而言,注入的载流子数目非常多,因此以上等式成立, 量子阱(QW)是指由2种不同的半导体材料相间排列形成的、具有明显量子限制效应的电子或空穴的势阱。

      多量子阱结构优势:1、在MQW结构中,电子和空穴的波函数重叠较多,因此其辐射复合的效率较高;2、在DH结构中, narrow bandgap材料形成的发光区不会长得太窄,否则会使发光区域变小,影响发光效率;也不能长得太宽,否则会超过载流子扩散长度,通常0.5-5um;如果中间的narrow bandgap材料和两边的large bandgap材料晶格不匹配,长晶后,材料会产生很多缺陷,使发光效率下降; 用MQW结构,中间narrow bandgap层可以做的很薄,晶格不匹配的影响很小,不会产生缺陷;如InGaN刚好发出蓝、绿光,两边large bandgap材料用GaN,但它们之间的lattice constant 不匹配,可以使InGaN长得很薄,两边材料长得很厚,材料不会产生松弛、开裂,但发光强度不够,因此采用MQW结构,长很多层材料间晶格不匹配时,要考虑用MQW结构3、利用MQW结构,可以使发出光子的能量有效增加 当形成QW结构时,能量会被量子化,能够有效提高载流子结合放出的能量特别地,需要调节bandgap时,经常使用Al,以实现所需色彩,但加Al后材料会趋近或变成间接带隙,发光性能下降。

      可以做成MQW结构,利用调变MQW的宽窄,可以调节禁带大小 4、MQW使有源层变薄,避免了内部的自我吸收 有源层产生的光子,在发出去之前,在有源层有可能被再吸收掉(发光区是narrowbandgap材料,而局域层是large bandgap),不会被吸上去有源层变薄后,可以减少光的吸收5、MQW发光光谱和I-V特性不易受温度影响,即元件特性对温度不太敏感 把外面变成圆形,能有效避免全反射,但这种结构不好加工 挖一个椎,减少全反射,但无法进入椎区域的光在多次全反射后,能量会损失 利用湿法刻蚀或机械加工方法在侧面切出斜边,打破四面对称结构,使光发射出来下边为p型反射金属HP公司 尺寸变为原来10倍 类似想法用于绿光MB发光层的光所走路径较长,在下面金属反射后,有损失XB发光层离底部金属反射层近,路径短,向上走时,从侧面斜角也可以出去光子走的路径短,损失较低 结束结束 。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.