好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

石墨烯透明导电薄课件.ppt

28页
  • 卖家[上传人]:cl****1
  • 文档编号:605665536
  • 上传时间:2025-05-20
  • 文档格式:PPT
  • 文档大小:401.50KB
  • / 28 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,主要内容,1.透明导电薄膜概述,2.石墨烯及石墨烯透明导电薄膜性质,3.石墨烯透明导电薄膜的制备方法,4.应用展望,透明导电薄膜(TCFs transparent conducting films)是指在可见光区()有较高的透光率(Tavg大于80%),并且有优良的导电性,电阻率可以达到一下 的薄膜材料透明导电薄膜是许多光电子器件的重要组成部分,例如液晶显示器(LCD),有机太阳能电池,有机发光二极管(OLCD)等常用的透明导电薄膜包括金属膜、氧化物膜(主要是指铟锡氧化物(ITO)、有机高分子膜、复合膜等,1.1透明导电薄膜概念及应用,1.2两种常用透明导电薄膜优缺点分析,金属膜具有良好的导电性,但其透光率较差铟锡氧化物(,ITO,)由于其高导电率和高透光率已经成为透明导电薄膜的主要材料之一然而使用过程中,,ITO,也存在一些缺点包括:,(1),铟的价格持续上涨,使得,ITO,成为日益昂贵的材料2,),ITO,的质地较脆,使得其不能满足一些新应用,(例如可弯曲的,LCD,、有机太阳能电池)的性能要求。

      3,),ITO,的制备方法(例如喷镀、蒸发、脉冲激光沉积、电镀)费用高昂2.1石墨烯的优良特性,自,2004,年第一次制备得到独立的单层石墨烯以来,吸引了众多科学家对石墨烯的研究,石墨烯已经成为材料及凝聚态物理领域一颗闪耀的新星石墨烯独特的二位晶体结构,赋予了它独特的性能,研究发现,石墨烯具有优良的机械性能,杨氏模量约,1000GPa,,同时由于其特殊的能带结构,石墨烯也表现出许多优良的的电学性质2.2石墨烯优良的光电性质,一、优良的电学性质:,1,、研究表明,石墨烯电子传导速率可达 ,,2,、由于石墨烯特殊的能带结构可以使得电子与空穴相互分离,因而即使在室温条件下也能观察到量子霍尔效应3,、石墨烯中电子传输的阻力也很小,可以移动亚微米的距离而不发生散射研究表明,石墨烯薄层的内禀电子迁移率可以达到,200000,比硅高,100,倍,比砷化镓高,20,倍2.3石墨烯优良的光电性质,优良的透光率,1,、理想单层石墨烯在白光的照射下不透明度只有,(2.3 0.1)%,,反射率是可以忽略不计的(,0.1%,)2,、在十层的时候反射率上升为,2.0%,,不透光度随着薄膜的厚度的增加而增加,每层石墨烯增加,2.3%,的不透光度。

      3,、一般情况下要确保大范围波长领域的透明度,在游资的密度约地越好不过,由于导电率与载流子迁移率和载流子密度的乘积成正比,因此如果载流子迁移率不是很高,那么较小的载流子密度也就意味这导电率较小,由于石墨烯的高载流子迁移率是得成为唯一对于包括远红外在内的所有红外线的高透明性导电材料,从而成为下一代透明导电薄膜理想的替代材料2.4石墨烯透明导电薄膜的潜在优势,石墨烯透明导电薄膜是以石墨烯及其杂化材料替代铟锡氧化物(ITO)的透明薄膜虽然石墨烯透明导电薄膜还处在研究阶段,但是石墨烯在许多方面比ITO具有更多的潜在优势,例如质量、坚固性、柔韧性、化学稳定性、红外透光性和价格等、因此采用石墨烯制备透明导电薄膜是一项很有前景的工作3石墨烯透明导电薄膜的制备方法,制备石墨烯透明导电薄膜的方法灵活多样,而且这些薄膜可以沉积到或转移到不同的基地上,如,SiO2/Si,、玻璃、石英、不饱和聚酯(,PET,)、聚甲基丙烯酸甲酯(,PMMA,)等发展到目前有化学气相沉积法(,CVD,)真空抽滤法、旋转涂覆法、喷射涂覆法、等目前化学气相沉积法,(CVD),被认为是一种最有前景,的制备几乎没有缺陷的石墨烯的方法之一,这种方法在 碳纳米管的制备上被广泛使用。

      这里主要介绍,CVD,制备方法3.1CVD法,目前化学气相沉积法,(CVD),是一种最有前景的制备几乎没有什么缺陷的方法,这种方法在碳纳米管的制备上被广泛使用化学气相沉积法制备石墨烯薄膜一般是将单晶或多晶金属薄片或膜置于碳氢化合物气体中,加热催化碳氢化合物裂解,在基底表面沉积形成石墨烯膜选用的金属材料通常是一些过渡金属材料,如,Co,、,Cu,、,Ni,、,Ir,、,Pt,等其中,Cu,和,Ni,使用的最多,不仅仅是因为他们价格相对便宜,更因为他们能更容易的被硝酸、氯化铁等溶液腐蚀,,Cu,和,Ni,上沉积的石墨烯膜,可以用热压贴合或,PMMS,转移到不同基底上,得到大面积、性能优良的石墨烯膜,如下图所示,3.1CVD法,3.1CVD-用Ni作为基底,Jo等采用CVD法在Ni箔上沉积石墨烯膜,得到的石墨烯膜的透光率在波长为400-800nm范围内超过85%,薄膜电阻为620 /sq制得的多层石墨烯膜按照需求的外观形状用感应耦合等离子体(ICP)处理,用于GaN发光二极管(LEDs)的透明导电电极得到的光输出性能与传统的用铟锡氧化物作电极的GaN LEDs具有可比性3.1CVD-用Cu作为基底,就,Ni,基底而言,在,CVD,法制备石墨烯薄膜的过程中,温度是控制石墨烯薄膜质量和生长速率的关键。

      在石墨烯的沉积过程中,由于,Ni,的晶粒小,导致膜在晶界上产生多层石墨烯,厚度不一,而且,Ni,对碳的高溶解度也限制了石墨烯膜的生长近期研究表明,,Cu,基底用于制备连续、均匀的单层石墨烯膜比,Ni,基底更有优势,分析认为,碳在,Cu,中的溶解度比其在,Ni,中的低,所以,Cu,在基底上更易得到均匀的单层石墨烯3.1CVD-用Cu作为基底,Srivastava等采用CVD法在Cu箔上沉积石墨烯膜,得到连续的单层和多层的石墨烯膜,与其它小组不同的是他们采用的前体不是气体而是液相前体乙烷,如下图所示基于液相前体的方法开创了一种便宜、方便的制备石墨烯薄膜的方法采用含有各种掺杂的有机溶剂作前体可以制备掺杂的石墨烯薄膜3.1CVD-用Cu作为基底,3.1CVD法优缺点分析,优点:,CVD,法可以获得结构完美的高质量大尺寸的石墨烯片,基于,CVD,法制备的石墨烯透明导电薄膜的薄膜电阻较低,其性能已与目前已商业化的,ITO,透明导电薄膜相当缺点:但是,CVD,法制作的石墨烯透明导电薄膜在尺寸方面受限于制备设备,难以实现大面积透明导电薄膜的制备,石墨烯的无损转移技术还存在一定的难度,同时不能够在低成本的情况下实现大规模生产,3.2真空抽滤法,在用氧化石墨烯,/,石墨烯分散液过滤之前,通常需将体系稀释至低浓度()。

      然后快速真空抽滤,将氧化石墨烯,/,石墨烯片沉积到滤膜(微孔混纤膜,/,氧化铝膜)上,在转移到不同基地上,如玻璃、,PET,等混纤膜可以用丙酮溶解,氧化铝膜可以用,NaOH,溶液溶解此外,也可以用聚二甲基硅氧烷(,PDMS,)将滤膜上的石墨烯膜转移到新的基地上3.2真空抽滤法,Eda,等用混纤膜真空抽滤不同体积的氧化石墨烯,/,水 分散液,得到氧化石墨烯膜,溶解掉混纤将膜转移到玻璃基地和塑料基地上,如图,1,所示化学还原和退火处理后得到厚度为,1-10nm,的透明导电薄膜过滤过程中,氧化石墨烯,/,石墨烯片受水流控制,自动流向滤膜的空白处,首先会将整个滤膜均匀覆盖,再沉积第二层因此这种方法得到石墨烯膜均匀性较好,膜的厚度也可以通过分散液的使用量控制,但是薄膜的尺寸受到真空过滤设备的限制,不能实现大面积制膜另外,由于透明导电薄膜的厚度通常只有,10-100nm,,很难独立支撑而必须依附于必要的支撑材料,因而必须采用特殊的转移技术将薄膜从过滤膜上剥离下来,这可能会造成薄膜结构的破坏,从而影响薄膜的性能3.2真空抽滤法,3.3旋转涂覆法,旋转涂覆法是一种常用的有机薄膜成膜的工艺,现在也常用于制备石墨烯透明导电薄膜。

      为了提高氧化石墨烯片于基底的相互作用力,在旋转涂覆前需对基地表面做一些处理,如氧化或涂上有机膜等,提高基地的亲水性然后将准备好的氧化石墨烯分散液滴到基地上,调节基地转速,使液体在基地上均匀铺展,干燥后得到氧化石墨烯膜理论上这种方法也可以用于各种石墨烯分散液以制备石墨烯膜,但目前暂未见报道3.3旋转涂覆法,Robinson,等将氧化石墨烯分散到乙醇中,制膜是用,N,2,吹扫,加快溶剂的挥发,在,Si/SiO2,表面沉积得到纳米级的薄膜,如图,7,所示,经肼还原后,他们将膜连基底一起浸入到,NaOH,溶液中,石墨烯膜漂浮在页面上,用新基底捞出后实现膜的转移,,Yin,等将氧化石墨烯分散在甲醇中,在,Si/SiO2,表面沉积得到氧化石墨烯薄膜,再经,1000,摄氏度加热,2h,还原后,转移到,PMMA,基地上3.3旋转涂覆法,旋转涂覆法制备石墨烯膜过程中需控制两个因素,其一是氧化石墨烯分散液浓度,其二是转速,高浓度的氧化石墨烯分散液制得的薄膜更厚,且更粗糙,提高转速可以加快溶剂挥发,减小膜的厚度3.4转移(以CVD法为例),甲烷,(CH,4,),在高温(,1073,摄氏度)热解,,C,原子在,Cu,箔基底上生长形成石墨烯,我们通常将,Cu,箔折叠,在生长过程中,,Cu,箔内外表面都会生长形成石墨烯层,研究表明,折叠,Cu,箔内层表面生长的石墨烯层质量较好,所以实验中采用内层表面生长的石墨烯层。

      3.4转移,在,Cu,内侧生长的石墨烯膜表面涂上一层光刻胶,(PMMA),利用等离子水将铜箔外侧的石墨烯清除干净以得到单层石墨烯薄膜与铜箔的结合体,接着利用腐蚀溶液,(NH,4,),2,S,2,O,8,),将铜箔清除以得到单层石墨烯薄膜与转移载体的结合体,其次利用去离子水多次清洗石墨烯薄膜,最后利用滤纸清除石墨烯表层的去离子水如下图所示),3.4转移步骤,4.1应用研究,1.,石墨烯透明导电薄膜可以作为目前普遍使用的,ITO,的替代材料,用于触摸面板柔性液晶面板、太阳能电池级有机,EL,照明等这一用途备受期待的原因在于,石墨烯具备较高的载流子迁移率(,200000,)及厚度较薄一般来说,高透明率与高导电率是互为相反的性质从这一点来看,,ITO,正好处在透明性与导电性微妙的此消彼长中(,Trade-off,)关系的边缘线上(如下图)这也是超越,ITO,的替代材料迟迟没有出现的原因4.1应用研究,4.1应用研究,石墨烯在理论上有望避开这种此消彼长的关系成为理想的透明导电膜其原因是,由于载流子迁移率非常高,即使载流子密度较低,到电导率也不容易掉下来而载流子密度较低的话,会比较容易穿过更大波长范围的光。

      相当于单个原子的超薄厚度同样有助于提高透明性不仅是可见光,石墨烯还可透过大部分红外线,这一性质目前已经为人所知因此,对于还希望利用红外线来发电的太阳能电池而言,石墨烯有望成为划时代的透明导电薄膜4.2应用研究,由于石墨烯透明导电薄膜具有优良的机械性能(杨氏模量可达1000GPa),所以可以制成柔性屏幕,实现屏幕卷曲。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.