好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

复数的三角形式及运算课件.ppt

24页
  • 卖家[上传人]:s9****2
  • 文档编号:585757703
  • 上传时间:2024-09-03
  • 文档格式:PPT
  • 文档大小:702KB
  • / 24 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 任务目标n知道复数的模和幅角的定义n会求复数的模和幅角主值n能求出复数的三角形式 n会进行复数三角形式的乘除运算 学习内容n复数的模的定义n复数的幅角的定义n复数的模和幅角主值的求解n复数的三角形式及其求解n复数三角形式的乘法n复数三角形式的除法 复数的模复数的模 由于不等于由于不等于0的复数的复数 可以用向量可以用向量 表示(如图)表示(如图)把向量把向量 的长度的长度 叫做复数的模数,叫做复数的模数,简称模(或绝对值),简称模(或绝对值), 记作记作 或或 由由直角三角形的知识可得:直角三角形的知识可得:且有 例 求下列复数的模(或绝对值)(1) (2)(3) (4)(5) (6)(7) (8)(9) (10) 把从把从 轴的正半轴到向量轴的正半轴到向量 的角的角 叫做复数叫做复数 的幅角(的幅角(如图)如图)复数的幅角复数的幅角((1)不等于)不等于0的复数的幅角的复数的幅角 有无数有无数多个,这些值相差多个,这些值相差 的整数倍。

      的整数倍 ((2)规定,满足条件)规定,满足条件 的幅角的幅角叫做幅角的主值通常记为叫做幅角的主值通常记为 ,即,即 ((3)对于复数)对于复数0 0,它所对应的向量缩成一个点(零向量),,它所对应的向量缩成一个点(零向量),这样的向量没有确定的方向,所以复数这样的向量没有确定的方向,所以复数0 0没有确定的幅角没有确定的幅角 说明:说明: 坐标轴上的复数的幅角主值坐标轴上的复数的幅角主值 设设 是一个正实数,那么有:是一个正实数,那么有: 1 1、复数、复数 是正实数,它对应的点在实轴的正半轴上,是正实数,它对应的点在实轴的正半轴上, 所以所以 2 2、复数、复数 是负实数,它对应的点在实轴的负半轴上,是负实数,它对应的点在实轴的负半轴上, 所以所以 3、复数复数 是纯虚数,它对应的点在虚轴的正半轴上,是纯虚数,它对应的点在虚轴的正半轴上, 所以所以 4、复数复数 是纯虚数,它对应的点在虚轴的负半轴上,是纯虚数,它对应的点在虚轴的负半轴上, 所以所以 例例 求下列复数的幅角主值:求下列复数的幅角主值:((1)) ((2))((3)) ((4))((5)) ((6))((7)) ((8))((9)) ((10)) 作业作业: 求下列复数的模和幅角主值:求下列复数的模和幅角主值:((1)) ((2))((3)) ((4)) 复数的三角形式复数的三角形式 由右图可以看出,对于复数由右图可以看出,对于复数 有有所以所以 其中,其中,r r为复数的模,为复数的幅角。

      为复数的模,为复数的幅角 定义:把定义:把 叫做复数的三角形式叫做复数的三角形式 为了同三角形式相区别,把为了同三角形式相区别,把 叫做复数的代数形式叫做复数的代数形式 说明1、在电工学中,可以将复数的三角形式写成:、在电工学中,可以将复数的三角形式写成:∠ ∠ ,, 即即 ∠ ∠ 2、在复数的三角形式中,幅角、在复数的三角形式中,幅角 的值可以用弧度表示,的值可以用弧度表示, 也可以用角度表示,可以是主值,也可以是主值加也可以用角度表示,可以是主值,也可以是主值加 或或 (( 为整数)但为了简单起见,复为整数)但为了简单起见,复 数的代数形式化为三角形式时,一般将数的代数形式化为三角形式时,一般将 写成主值写成主值 例例 将下列复数转化为三角形式将下列复数转化为三角形式:((1)) ((2))((3)) ((4))((5)) ((6))((7)) ((8))((9)) ((10)) 例例 将下列复数的三角形式转化为代数形式将下列复数的三角形式转化为代数形式 (1))((2))((3)) ∠∠((4)) ∠∠((5 5))((6 6)) ∠ ∠ 作业:作业: 复数三角形式的乘法复数三角形式的乘法 设设 的三角形式分别是:的三角形式分别是: 于是于是即是说,两个复数相乘,积还是一个复数,它的模即是说,两个复数相乘,积还是一个复数,它的模等于各复数的模的积,它的幅角等于各复数的幅角等于各复数的模的积,它的幅角等于各复数的幅角的和。

      简单的说,两个复数三角形式相乘的法则为:的和简单的说,两个复数三角形式相乘的法则为:模数相乘,幅角相加模数相乘,幅角相加 复数的三角形式乘法法则有如下推论(1)有限个复数相乘,结论亦成立即 (2)当 时,即 ,有这就是复数三角形式的乘方法则,即:模数乘方,幅角模数乘方,幅角 倍倍 在复数三角形式的乘方法则中,当 时,则有 这个公式叫做棣美弗公式 例 计算下列各式:(1)(2)(3)(4) 巩固练习:巩固练习: 复数三角形式的除法复数三角形式的除法设有复数设有复数 ,, ,,且设且设 ,那么,那么这就是复数三角形式的除法法则,即:这就是复数三角形式的除法法则,即:模数相除,幅角相减模数相除,幅角相减 例例 计算下列各式计算下列各式 巩固练习:巩固练习:((1))((2))((3))(4) 课堂小结课堂小结1 1、复数的模、复数的模 2、、复数的幅角及幅角主值复数的幅角及幅角主值 3、复数的三角形式、复数的三角形式 4、复数三角形式与代数形式的互化、复数三角形式与代数形式的互化 5、复数三角形式的乘法法则:、复数三角形式的乘法法则:模数相乘,幅角相加模数相乘,幅角相加 6、复数三角形式的乘方法则、复数三角形式的乘方法则:模数乘方,幅角模数乘方,幅角 倍倍7、复数三角形式的除法法则、复数三角形式的除法法则:模数相除,幅角相减模数相除,幅角相减 作业:作业: 。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.