
2024年重庆市中考数学真题(a卷)(解析版).docx
33页重庆市2024年初中学业水平暨高中招生考试数学试题(A卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线的顶点坐标为,对称轴为.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧确答案所对应的方框涂黑.1. 下列四个数中,最小的数是( )A. B. 0 C. 3 D. 【答案】A【解析】【分析】本题考查了有理数比较大小,解题的关键是掌握比较大小的法则.根据正数大于0,0大于负数,两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵,∴最小的数是;故选:A.2. 下列四种化学仪器的示意图中,是轴对称图形的是( )A. B. C. D. 【答案】C【解析】【分析】此题考查了轴对称图形的概念,根据概念逐一判断即可,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,熟练掌握知识点是解题的关键.【详解】、不是轴对称图形,故本选项不符合题意;、不是轴对称图形,故本选项不符合题意;、是轴对称图形,故本选项符合题意;、不是轴对称图形,故本选项不符合题意;故选:.3. 已知点在反比例函数的图象上,则的值为( )A. B. 3 C. D. 6【答案】C【解析】【分析】本题考查了待定系数法求反比例解析式,把代入求解即可.【详解】解:把代入,得.故选C.4. 如图,,,则的度数是( )A. B. C. D. 【答案】B【解析】【分析】本题主要考查了平行线的性质,根据平行线的性质得,由邻补角性质得,然后求解即可,熟练掌握两直线平行,同位角相等是解题的关键.【详解】解:如图,∵,∴,∵,∴,故选:.5. 若两个相似三角形的相似比是,则这两个相似三角形的面积比是( )A. B. C. D. 【答案】D【解析】【分析】此题考查了相似三角形的性质,根据“相似三角形的面积比等于相似比的平方”解答即可.【详解】解:两个相似三角形的相似比是,则这两个相似三角形的面积比是,故选:D.6. 烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是( )A 20 B. 22 C. 24 D. 26【答案】B【解析】【分析】本题考查数字的变化类,根据图形,可归纳出规律表达式的特点,再解答即可.【详解】解:由图可得,第1种如图①有4个氢原子,即第2种如图②有6个氢原子,即第3种如图③有8个氢原子,即,第10种化合物的分子结构模型中氢原子的个数是:;故选:B.7. 已知,则实数的范围是( )A. B. C. D. 【答案】B【解析】【分析】此题考查的是求无理数的取值范围,二次根式的加减运算,掌握求算术平方根的取值范围的方法是解决此题的关键.先求出,即可求出m的范围.【详解】解:∵,∵,∴,故选:B.8. 如图,在矩形中,分别以点和为圆心,长为半径画弧,两弧有且仅有一个公共点.若,则图中阴影部分的面积为( )A. B. C. D. 【答案】D【解析】【分析】本题考查扇形面积的计算,勾股定理等知识.根据题意可得,由勾股定理得出,用矩形的面积减去2个扇形的面积即可得到结论.【详解】解:连接,根据题意可得,∵矩形,∴,,在中,,∴图中阴影部分的面积.故选:D.9. 如图,在正方形的边上有一点,连接,把绕点逆时针旋转,得到,连接并延长与的延长线交于点.则的值为( )A. B. C. D. 【答案】A【解析】【分析】过点F作延长线的垂线,垂足为点H,则,证明,则,设,得到,则,故,同理可求,则,因此.【详解】解:过点F作延长线的垂线,垂足为点H,则,由旋转得,∵四边形是正方形,∴,,,设,∴,∵,∴,∴,∴,,设,则,∴,∴,而,∴,∴,∵,∴,同理可求,∴,∴,故选:A.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,解直角三角形,旋转的性质,正确添加辅助线,构造“一线三等角全等”是解题的关键.10. 已知整式,其中为自然数,为正整数,且.下列说法:①满足条件的整式中有5个单项式;②不存在任何一个,使得满足条件的整式有且只有3个;③满足条件的整式共有16个.其中正确的个数是( )A. 0 B. 1 C. 2 D. 3【答案】D【解析】【分析】本题考查的是整式的规律探究,分类讨论思想的应用,由条件可得,再分类讨论得到答案即可.【详解】解:∵为自然数,为正整数,且,∴,当时,则,∴,,满足条件的整式有,当时,则,∴,,,,满足条件的整式有:,,,,当时,则,∴,,,,,,满足条件的整式有:,,,,,;当时,则,∴,,,,满足条件的整式有:,,,;当时,,满足条件的整式有:;∴满足条件的单项式有:,,,,,故①符合题意;不存在任何一个,使得满足条件的整式有且只有3个;故②符合题意;满足条件的整式共有个.故③符合题意;故选D二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11. 计算:=_____.【答案】3【解析】【分析】根据零指数幂和负指数幂意义计算.【详解】解:,故答案为:3.【点睛】本题考查了整数指数幂的运算,熟练掌握零指数幂和负指数幂的意义是解题关键.12. 如果一个多边形的每一个外角都是,那么这个多边形的边数为______.【答案】9【解析】【分析】本题考查了多边形的外角和定理,用外角和除以即可求解,掌握多边形的外角和等于是解题的关键.【详解】解:,∴这个多边形的边数是,故答案为:9.13. 重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从、、三个景点中随机选择一个景点游览,甲、乙两人同时选择景点的概率为_____.【答案】【解析】【分析】本题考查了画树状图法或列表法求概率,根据画树状图法求概率即可,熟练掌握画树状图法或列表法求概率是解题的关键.【详解】解:画树状图如下:由图可知,共有种等可能的情况,其中甲、乙两人同时选择景点的情况有种,∴甲、乙两人同时选择景点的的概率为,故答案为:.14. 随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是______.【答案】【解析】【分析】本题主要考查一元二次方程的应用.设平均增长率为x,然后根据题意可列方程进行求解.【详解】解:设平均增长率为x,由题意得:,解得:,(不符合题意,舍去);故答案为:.15. 如图,在中,延长至点,使,过点作,且,连接交于点.若,,则______.【答案】【解析】【分析】先根据平行线分线段成比例证,进而得,,再证明,得,从而即可得解.【详解】解:∵,过点作,,,∴,,∴,∴,∴,∵,∴,,∵,∴,∵,,∴,∴,∴,∴,故答案为:,【点睛】本题主要考查了平行线的性质,三角形的中位线定理,平行线分线段成比例以及全等三角形的判定及性质,熟练掌握三角形的中位线定理,平行线分线段成比例以及全等三角形的判定及性质是解题的关键.16. 若关于的不等式组至少有2个整数解,且关于的分式方程的解为非负整数,则所有满足条件的整数的值之和为______.【答案】16【解析】【分析】本题考查了分式方程的解,以及解一元一次不等式组.先解不等式组,根据关于的一元一次不等式组至少有两个整数解,确定的取值范围,再把分式方程去分母转化为整式方程,解得,由分式方程的解为非负整数,确定的取值范围且,进而得到且,根据范围确定出的取值,相加即可得到答案.【详解】解:, 解①得:,解②得:,关于的一元一次不等式组至少有两个整数解,,解得,解方程,得,关于的分式方程的解为非负整数,且,是偶数,解得且,是偶数,且,是偶数,则所有满足条件的整数的值之和是,故答案为:16.17. 如图,以为直径的与相切于点,以为边作平行四边形,点D、E均在上,与交于点,连接,与交于点,连接.若,则______.______.【答案】 ①. 8 ②. ##【解析】【分析】连接并延长,交于点H,连接,设、交于点M,根据四边形为平行四边形,得出,,证明,根据垂径定理得出,根据勾股定理得出,求出;证明,得出,求出,根据勾股定理得出,证明,得出,求出.【详解】解:连接并延长,交于点H,连接,设、交于点M,如图所示:∵以为直径的与相切于点A,∴,∴,∵四边形为平行四边形,∴,,∴,∴,∴,∵,∴,∴,∴;∵,∴,∴,∴,即,解得:,∴,∵为直径,∴,∴,∵,∴,∴,∴,即,解得:.故答案为:8;.【点睛】本题主要考查了平行四边形的性质,垂径定理,圆周角定理,切线的性质,勾股定理,三角形相似的判定和性质,解题的关键是作出辅助线,熟练掌握三角形相似的判定方法.18. 我们规定:若一个正整数能写成,其中与都是两位数,且与的十位数字相同,个位数字之和为,则称为“方减数”,并把分解成的过程,称为“方减分解”.例如:因为,与的十位数字相同,个位数字与的和为,所以是“方减数”,分解成的过程就是“方减分解”.按照这个规定,最小的“方减数”是______.把一个“方减数”进行“方减分解”,即,将放在的左边组成一个新的四位数,若除以余数为,且(为整数),则满足条件的正整数为______.【答案】 ①. ②. 【解析】【分析】本题考查了新定义,设,则(,)根据最小的“方减数”可得,代入,即可求解;根据除以余数为,且(为整数),得出为整数,是完全平方数,在,,逐个检验计算,即可求解.【详解】设,则(,)由题意得:,∵,“方减数”最小,∴,则,,∴,则当时,最小,为,故答案为:;设,则(,)∴∵除以余数为,∴能被整除∴为整数,又(为整数)∴是完全平方数,∵,∴最小为,最大为即设,为正整数,则当时,,则,则是完全平方数,又,,无整数解,当时,无整数解,当时,,则,则是完全平方数,经检验,当时,,,,∴,∴故答案为:,.三、解答题:(本大题8个小题,第19题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包。












