好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

数独实验报告.docx

3页
  • 卖家[上传人]:m****
  • 文档编号:410656962
  • 上传时间:2023-11-18
  • 文档格式:DOCX
  • 文档大小:20.70KB
  • / 3 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 数独实验报告  一、 算法描述  求解Sudoku让人最容易想到的方法是穷举每个方格可能的值,如果符合条件,则得到解,不符合条件则进行回溯通过递归的方法,显然可以得到数独的解  我想到的简单的递归方法,是每一行从左到右,试验每一个方格可能的数字,进行递归这种方法看似非常麻烦,实际上对于一般的数独题,速度是非常快的,思想比较简单,写出来的代码也非常简单、易懂  算法1:简单递归方法  从第一个格开始,从1到9试验,是否满足行、列、九宫格互不相同的条件若满足条件,则填入该数字,再试验下一个格当一个格子出现没有数字能填的情况时,说明已经填的数字有误,回溯,再进行递归  算法2:优化的递归算法  先遍历所有格子,统计每种格子可能出现数字的个数每次挑选可能出现数字个数最少的格子来进行递归  设置三维数组poss[i][j][k]来存储可能出现数字的信息poss[i][j][0]记录i行j列的格子可能出现数字的个数,poss[i][j][k](1若poss[i][j][k]=1,表示k可能在(i,j)格出现若poss[i][j][k]=0,表示k不可能在(i,j)格中出现每次找poss[i][j][0]最小的格子,来进行下一个递归。

        算法3:生成数独棋盘的算法  我最开始的想法是穷举法,随机生成满足行各不相同的9行,再判断9宫格、每列是否符合要求,符合条件时,随机生成停止然而,这种算法的当然时间复杂度显然是过高第99一步的随机生成的次数是9*9/P9=9608随机生成一组棋盘耗时就非常大后来,我从求解的个数的程序获得启发算法二对于1000多组解的数独棋盘,解起来也很快随机生成填9个方格,再用算法一的方法解出来,取第一组正确的解作为棋盘即可生成填好的棋盘再把一定数量的格子的数字随机删除,计算解的个数如果解唯一,就得到了棋盘  二、数据结构  这三种算法的数据结构不是非常复杂,只是普通的数组  算法一:数组a[i][j]  算法二:数组a[i][j]和poss[i][j][k]  算法三:数组a[i][j]和poss[i][j][k]  三、时间效率分析  算法1:这种算法在tsinsen系统上只用了15ms得到全部答案  虽然这种算法在tsinsen系统的测试中有很好的表现,但是我试了试在几道骨灰级难度的题,发现这种算法可能会用到10秒以上的时间,并且测试数据不同,时间差异非常大  我认为,这种算法的漏洞在于,如果开始的格子可能出现的数字非常多,递归树开始的枝会非常多。

      并且,我们一般做数独题,都会先挑可能出现数字个数最少的格子来填,充分利用了已知条件然而,这种算法只按格子的行列顺序来试验,显然非常傻于是,我想出了第二种算法  算法2:这种算法耗时长  非常令人失望的是,虽然它能在短时间内解出骨灰级题目,但是,和上一个算法相比,对于简单的题目,它比较耗时在tsinsen系统中测试的时间是91ms它的缺陷在于,每次递归都必须更新(i,j)格子所在的行、列、九宫格所有的元素每次要求***个数的poss[i][j]回溯同样要更新并且求poss[i][j]的函数时间复杂度是O(n)每一步所耗时间比上一种算法多很多但是,总的试验的步数能显著减少  所以,这种算法适用于数独解题的动画演示和解极难题目  四、程序结构  五、运行结果  六、总结和反思  后来老师提高了难度,要求程序能求出多解数独题的解的个数几千个解的数据都能迅速得出答案,但是几万个解的数据,需要很长时间,更别提几百万的数据这两种递归的算法都有问题,优化的空间也有限,需要更强大、高效的算法  这次Project让我不断思考,改进了最初的算法编程是确实是一个克服困难、不断改进与超越的过程总有新的数据摆在面前,把原来的算法打击得很惨,激励着我们研究更加先进的算法。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.