
阻尼溢流阀的建模与动态响应 液压专业毕业设计外文翻译.doc
11页阻尼溢流阀的建模与动态响应作者 :richard.eyres@bristol.ac.uk (英国布里斯托尔大学布里斯托尔工程动态实验室)原文标题:Modelling and Dynamic Response of a Damper with Relief Valve摘要 :抽象的本文概述了几种可行的方法:一个含有液压阻尼结构的安全阀打开一条旁路管道. 将最初的一个简单的代数模型,推导演变成一个复杂的结合流体动力学和流体压缩性的模型.通过数值仿真来模拟现实现象和设计参数.关键词:流体压缩系数、液压阻尼器、非线性、安全阀1.介绍振动阻尼器在许多应用场合使用,例如汽车减震器上,桥梁的稳定上,直升机和抗震的建筑物为了使一个系统不用反复进行实际试验,建立一个模型是至关重要的本文将重点阐述一个大型机械系统中的阻尼器,把该阻尼器作为一个独立的模块来研究 因此它是假定的一个简单且以时间为变量的模型.当输入位移时会产生一种力仿制的阻尼器在本质上是一个液压柱塞它上面有一个小活塞孔口连接两侧流体使其流动 ,如图1所示通过这个原理可对复杂的阻尼器进行研究当柱塞两边的压差足够高时,一个锥阀打开,允许流体流过如图2的替代管。
这种情况发生时的阻尼器就称为开阀开阀是通过阻尼器套管使油液连通的阀油液通过时会对旁路管路产生阻力,管道的压差,决定了阀门开合开阀系统和负压差系统是一样,它们与自由阀门不同之处是负压时阀门会处于静止状态以防止第二旁路管中的流体在相反的方向自由流动. 这样一种阻尼器,用于指示非线性模型.用于小振幅阻尼或低频运动的应用场合是很重要的.根据阻尼器的性质分类,可决定它可以被应用于以上的哪种工作方式这种有不同运作模式的可调阻尼器,广泛应用在陆地和在水上,如汽车高速运行,以及越野其他方面的应用有飞机起落架和叶片阻尼器当阻尼器在全面运作时,阻尼器可以采取不同的运作方式 本研究主要目的是试图再现液压减振器测试的显示数据.如图表1和2这个数据的显著的特点是:具有滞后性和延迟反应; 在开阀区域有抖动振荡图3所示的是一个典型的输入系统线图线图显示了活塞阻尼器的位移与时间关系时间被定为1个周期,位移如4.3节所述输入的主要特征是光滑的周期运动和位移梯度较小的数量变化.从这种类型的输入,我们需要一种类似如图4所示的力这个力已经恢复到的使开阀上的活塞能够打开,允许直接比较的力与时间曲线对应的力表明在反向力处会快速振荡。
在这些区域力的方向并没有改变,没有像期望的那样,有位移梯度显示的几种输出延迟反应这种迟滞现象更明显地反映在速度图线反映的力上在一个位移输入高频变化的简短响应中,迟滞反应的结果是对输入位移的变化做出反应,同时允许对低频组件做出平稳响应一个动态的且完全参数化的模型,比如这个阻尼器,因为压缩弹簧和管道里的液体压迫而受到压力如后面图所示,这可能会造成一个复杂的动态响应当管段的阻尼器模型, 收到如在图1中的响应[8]的基础上,由此产生的模型可以用来预测阻尼器的动态响应性质变化的效果研究的关键内容是, 孔和旁路管路在弹簧刚度和阀的排放特性不同的情况下的尺寸在这个文章里简单推导总质量参数模型,将所有这些影响2.液压阻尼器广泛应用的两种常见阻尼吸振器为:被动阻尼器;与半主动阻尼器被动阻尼器,如液压阻尼器,该阻尼器没有外部输入控制, 在操作和执行上属于完全被动方式主动阻尼器有一个外部的能量输入力的响应,以便根据给定的输入来改变力的响应以适合工作环境, 而这可能会导致需求较高的能源. 这也就是半自动阻尼器为何现在变得越来越受欢迎的原因.半自动阻尼器类似于自动阻尼器,不同之处是对于半主动阻尼器,必须给出力的指令,来命令驱动阻尼器。
可以采用一个如图1装置,模拟在流体孔粘滞阻尼被动阻尼器的响应在所有时间内是相同的(忽略损失等等)而一个的半主动减振器可能由于机械上孔大小的改变而产生不同反应要完全理解这种类型的半主动减振器,重要的是去理解被动的简单情况下,以便推导控制律推导出一种参数化模型是必要的,而不是用传递函数的阻尼器建模.更快的解决方案,它可以不考虑物理系统例如,孔直径变化就需要进行改造和重新拟合阻尼器模型测试数据这除了对参数模型进行验证外,不会被要求实施被动阻尼器在许多应用领域使用,例如汽车的冲击吸收系统这类系统工作的工作模型都是基于执行一组数学方程最终方程都是基于相同的基本方程用传递函数,可以产生一个更简单方程.参照图1,由此方程可得阻尼器的力定义式活塞上的受力状态方程,取决于一个给定运动y(t).应用于阻尼器的阀体的惯性和m¨y(t)给出了,在活塞上的力取决于两个腔之间的压力(P1(t)−P2(t)]与活塞由于与假定的面摩擦产生的恒定力的差别一个是活塞的截面积在稍后参考论文中应该指出,方程(1)不适用于迟滞的表征压差(P1(t)−P2(t)],可以归因于粘滞摩擦损失, 通过管口p f和在其出口孔的水头损失ph值的总和。
假设流体不可压缩, 用连续性方程可以来获得体积的变化,(2) 对于小˙y的流量可以假设为层流然后可以[16]Poisseuille方程来表达˙V和pf之间的压力差p两个腔由于粘性在阻尼器的建模和动态响应(3)在这里η是动态粘度、l是长度、d是其孔口直径(假定圆截面)结合方程(2)和(3)得到通过孔口粘滞力下列方程其中A是孔的面积第二个压力损失是由于ph水头损失(有时叫做节流损失),在其出口孔给出V-压缩流体的速度90o出口,c=0.5由动量守恒原理得 因此这里ρ是液体的密度压力差P1−P2等于方程(7)中所描述的损失整体的运动方程,因此是所提供的现有的测试数据不认为摩擦有任何显著影响因此d3可以从方程方程(9)省掉3.开阀动力学该模型可以推广到更现实的安全阀和开阀区域的动力学过程如上面的所述,阻尼器被研究是因为其有一个开阀区域在这个区域流体被允许通过旁路阀门,而非让流过活塞的的主孔(见图2)这种阀门能够打开一个预先受力的活塞, 使两个腔产生不同的压力差由此产生的压差与流体在阀门处的回流管和对面腔不同, 如果活塞动力是足够大 (F >Fcrit) 将导致阀门开启由此产生的回流穿过阀门充当另一个孔。
在可能的最简单的模型下,我们可以把阻尼器视为旁路阻尼管,它用相同的方法、准确地开在经典位置但是呈现不同的几何形状这个区与的孔成为这个区域的旁路管而不是A0因此我们使用方程(9)四个不同的区域各种系数也随之变动:(一)压力低 (F < Fcrit)、阻尼器处于压缩(˙> 0);y(二)压力高(F > Fcrit)、阻尼器处于压缩(˙> 0);y(三)压力低(F < Fcrit)、阻尼器处在反弹(y˙< 0);以及(四)压力高(F > Fcrit)、阻尼器处在反弹(y˙< 0)三个分离的可能性被认为是在接下来的两个部分里这些是:更小心处理临界力; 流动中的变化是由于4.1弹性阀,在4.2可压缩性部分这些在4.3节总结成一个综合的模型在本节中,该系统可以看作是一套明确的公式,而不需要使用时间步进方法目标是预测一个给定输入位移F(ωt y =sin( t≈))3.1 恒压模型从第二节还不清楚当阀门开启时d3应该是什么的价值在方程(9)由于摩擦而被忽视了在试验数据(图4)表明,当速度梯度低而旁路阀门开启速度高时将存在力的补偿用方程(9)来计算力,当阀门开启时在这个方程里需要一个常数以防止力处于零时,速度趋于零。
这是包括d3这种补偿的作用可以在最简单的情况下使用方程(9) 计算一个正弦临界力超过已知值通过动作而溢出然而输入对阻尼器不会永远都是这么简单有待应用物理论证参数是否选择正确这个部分描述了一个简化假设,可使模型从低作用力(F < Fcrit)即当阀门关闭时, 过渡到较高作用力(F > Fcrit)即溢流阀打开时的力将会用物理方法讨论解释开阀的运动区域, 由于摩擦而产生的影响被忽视了,因为它被假定是很小的总体运动方程、忽视过渡区,给出了方程(10)在较低的压力下,所有的流量将通过活塞孔口由于弹簧的预加压力作用阀将持续关闭 这将是真是存在的在临界力Fcrit达到临界压力在Pcrit图6的临界压力曲线图表明,流速较低时,临界力与ycrit速度将成正比 以上这种流量的增加产生的力,使阀门打开允许一些的液体流过旁路管如果腔1可以被认为是体积比较大, 在压力室1,由于额外的流体流经旁路管而引起的压力改变是可以忽略的这就意味着在活塞孔口压差将大致保持常数因为力大于临界力,所以洞口流量将保持不变这意味着,力的影响由于活塞孔口不变,将等于Fcrit力额外的流体通过旁路孔会导致额外的力可以被添加到Fcrit。
如今成为整体方程,指图6,如果假定旁路口的水头损失足够大,来避免产生力速度线性的特性 这可能导致计算量大的问题需要计算每个开阀图6说明了在非物理的参数d(2)的来源,如果临界速度是已知的进一步讨论将在第3.2节3.2 等效速度模型如果对于一个给定的输入位移的全周期能够通过流体的流动来描述的话,它将会是一个简单分析系统的办法这一部分是过对3.1节的扩展,其目的是计算通过孔的假设有效连续流量过渡,并且要考虑到阀的开度由于忽略了压缩系数、流量的全向运动,活塞将会完全承受一部分来自流体通过孔(174问:)和水流通过旁路软管(Qb)的压力这可以表示为管道两头气流损失(因而相应的压差)必须是平等的,[18]中讨论管网工程与应用作为一个简单的例子,这意味着一个更广阔的管道将需要更多的流体通过它来产生相同的水头损失作为相似的情况,不能是较窄的管道要定义的损失系数、流量的比值参考图6,这个想法可以应用到方程(10)阻尼器的建模和动态响应在图6中的这个例子显示当速度为y1˙时压差为P1双方的水头损失在路线和压差上是等效的主要孔的等效速度为Ye,这可以通过方程(10)计算得到,忽略了活塞的惯性和摩擦通过旁路管的流量因此可以通过下式得到现在有两个压力P1或力的方程。
4 建模的进一步的作用4.1 由于安全阀的流量改变第3.2节可以扩展到包括安全阀动态弹性这个系统有三个部分可以产生压差(忽略压缩性):(a)流量通过活塞孔口;(b)流量通过旁路管;(c)流过阀门两个腔压力差如3.2节所述,必须相同由孔产生的压力损失必须与旁路管的损失相同并与阀门结合在一起,所以Pv是由于流体流过阀门的压力损失 Pb流体流过旁路管的压力损失用方程(19)来定义,经过阀门的流量Qv用试验的方法确定的Cp和γ,dv是阀门的直径和α是阀门的锥半角在不可压缩流动的情况下, 由于活塞运动的两种途径的可分为,如(13)一个给定的流体通过相对几何形状的孔时将产生压差如方程(9),根据活塞的运动速度,流量可以直接计算出流体通过主孔的压力差就可以适用方程(9),使得压力损失按照流动速率 从方程(5)同样流体通过旁路管压力损失为在B1、B2的计算方式类似于D1、D2和旁路管尺寸使用一条旁路损失系数Qb= Qv 在不可压缩的容器用方程(18)-(20)和(23)的替代阻尼器的建模和动态响应解法是,把Qv代入方程(19),得到用来计算通过阀门的压差的方程,根据活塞的运动速度和阀门位移可得在阀上所受的力Fv、横截面积Av、如下这可以代替阀门的运动方程的方程(31)附加条件mv是阀门及弹簧的有效质量、δ是阻尼常数,k弹簧 刚度和c是弹簧预压量。
解法:、将X(t)代入微分方程(27)解出Qv ,从方程(13)解出Q0活塞上受的力由方程(。
