
教学设计平方根湘教版.doc
4页义务教育教科书数学S H U X U E《平方根》教学设计♦教材分析本节课是湘教版数学八年级上册第三章实数第一节课,本节要求了解平方根的概念, 会用根号表示平方根了解开方与乘方互逆运算,会用求某些非负数的平方根因此本节课重点是了解开方与乘方互为逆运算, 能熟练地用平方根求某些非负数的平方根•所渗透的数学思想方法有:类比,转化,建模V♦教学目标【知识与能力目标】1、 了解平方根的概念,会用根号表示平方根;2、 了解开方与乘方互逆运算,会用求某些非负数的平方根过程与方法目标】通过尺平方根的运算,让学生体会无理数是因实际生活的需要而产生的,理解数的扩 充情感态度价值观目标】让学生在自主参与、 合作交流的活动中体验成功的喜悦, 树立自信,激发学习,发展学生的符号语言♦教学重难点」【教学重点】了解开方与乘方互为逆运算,能熟练地用平方根求某些非负数的平方根教学难点】了解开方与乘方互为逆运算,能熟练地用平方根求某些非负数的平方根 ♦课前准备多媒体课件教学过程/一、导入新课某家庭在装修儿童房时需铺地垫 10.8m2,刚好用去正方形的地垫 30块你能算出每块地垫的边长是多少吗?、新课学习问题一:认真观察下面的式子,积极思考,互相讨论:22 =4,(-2)2 =4,(1)21,( -1)2 *9 3 92 20.5 = 0.25,(-0.5) = 0.25.请你举例与上面的式子类同的式子;你得到什么结论?(分小组讨论,老师适当参与给予帮助。
)如果一个数的平方等于 a,那么这个数叫做的 a平方根(square root),也称为二次方根如果x?二a,那么x就叫做a的平方根设计说明:所选的题目都具有代表性,学生通过做题后思考讨论交流,能够较好接受平方 根的概念问题二:在下列各括号中能填写适当的数使等式成立吗?如果能够,请填写;如果不 能,请说明理由,并与同学交流2 =9,( )2 =25,(TV(丫=5,( 丫=10,( f =0,( —4.一个正数的平方根有 2个,它们互为相反数一个正数a的正的平方根,记作“ 爲”,正数a的负的平方根记作“-爲这两个平方根合起来记作“7 ”,读作“正,负根号a” .设计说明:通过对具体的数的平方根的讨论交流, 使学生自己总结出正数、 0、负数的平方根的情况,让学生经历探索规律的过程,加深对规律的理解问题三:从问题二中,你得到了什么结论?一个正数的平方根有2个,它们互为相反数;0只有1个平方根,它是0本身; 负数没有平方根设计说明:在讨论的过程中,不同层次的学生可能会遇到不同的困难,我们教师要 给与适当的帮助,要给与鼓励(三)尝试反馈,领悟新知例1求下列各数的平方根:2536;( 2) ( 3)1.21 ;。
9分析:1、判断这些数是否都有平方根;2、根据规律各个数的平方根有几个?设计说明:在处理例题时要让学生充分参与分析,在运算时特别要注意一个正数的 平方根有两个,对解题方式有提醒按要求解答过程见PPT例2 分别求下列各数的算术平方根:10016 —0.4925解答过程见PPT练习题一:完成书本 4页练习练习题二:1、平方得81的数是,因此81的平方根是、平方根是它本身的数是 、如果一b是a的平方根,那么(a =b2 ; c、b = -a2 ; d、a = -b2设计说明:在练习的过程中,无论哪个层次的学生其回答只得法,我们教师要给与鼓励和r H.冃疋 三、结论总结1.平方根 2.算术平方根3. 无理数4. 用计算器求平方根四、课堂练习见PPT五、作业布置巩固新知 P7 1、2可选用:下列各数有平方根吗?如果有,写出它的平方根;如果没有,请说明理由1(1) 4 ; (2) _4"3 2; (3) _9 ; (4) 一 52♦教学反思——略。
