
全国各地中考数学试题分13:全等三角形.doc
5页中考资源网2010年中考数学试题分类汇编 全等三角形1. (2010年河南)如图,四边形ABCD是平行四边形,△AB’C和△ABC关于AC所在的直线对称,AD和B’C相交于点O.连结BB’.(1)请直接写出图中所有的等腰三角形(不添加字母);(2)求证:△A B’O≌△CDO.2、(2010年福建省德化县)(本题满分10分)已知: 如图, 菱形ABCD中, E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF.(2)若AE垂直平分BC,AF垂直平分CD,求证: △AEF为等边三角形.3、(2010年燕山)已知:如图,四点B、E、C、F顺次在同一条直线上,A、D两点在直线BC的同侧,BE=CF,AB∥DE,∠ACB=∠DFE.求证:AC=DF.4.(2010年北京顺义)已知:如图,AB=AC,点D是BC的中点,AB平分,,垂足为E.求证:AD=AE.5(2010年浙江省东阳县)如图,已知BE⊥AD,CF⊥AD,且BE=CF.(1)请你判断AD是△ABC的中线还是角平分线?请证明你的结论.(2)连接BF、CE,若四边形BFCE是菱形,则△ABC中应添加一个条件 6.(2010日照市)一次函数y=x+4分别交x轴、y轴于A、B两点,在x轴上取一点,使△ABC为等腰三角形,则这样的的点C最多有 个. 7、(2010重庆潼南县)19.(6分)画一个等腰△ABC,使底边长BC=a,底边上的高为h(要求:用尺规作图,保留作图痕迹,写出已知,求作,不写作法和证明).已知: 求作:答案:已知:线段a、h 求作:一个等腰△ABC使底边BC=a,底边BC上的高为h 画图(保留作图痕迹图略)8、(2010重庆市潼南县) 如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连结AG,点E、F分别在AG上,连接BE、DF,∠1=∠2 , ∠3=∠4.(1)证明:△ABE≌△DAF;(2)若∠AGB=30°,求EF的长.10、(2010年浙江省绍兴市) (1) 如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.求证:BE=CF.第23题图1(2) 如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°, EF=4.求GH的长.第23题图2(3) 已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4. 直接写出下列两题的答案:①如图3,矩形ABCD由2个全等的正方形组成,求GH的长; ②如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).第23题图4第23题图3【答案】第23题图1(1) 证明:如图1,∵ 四边形ABCD为正方形,∴ AB=BC,∠ABC=∠BCD=90°, ∴ ∠EAB+∠AEB=90°.∵ ∠EOB=∠AOF=90°,∴ ∠FBC+∠AEB=90°,∴ ∠EAB=∠FBC, ∴ △ABE≌△BCF , ∴ BE=CF. (2) 解:如图2,过点A作AM//GH交BC于M,过点B作BN//EF交CD于N,AM与BN交于点O/,则四边形AMHG和四边形BNFE均为平行四边形, 第23题图2O′NM∴ EF=BN,GH=AM, ∵ ∠FOH=90°, AM//GH,EF//BN, ∴ ∠NO/A=90°,故由(1)得, △ABM≌△BCN, ∴ AM=BN,∴ GH=EF=4. (3) ① 8.② 4n. 11、(2010年宁德市)(本题满分8分)如图,已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是:_______________,并给予证明.【答案】解法一:添加条件:AE=AF, B D CAEF证明:在△AED与△AFD中,∵AE=AF,∠EAD=∠FAD,AD=AD,∴△AED≌△AFD(SAS).解法二:添加条件:∠EDA=∠FDA,证明:在△AED与△AFD中, ∵∠EAD=∠FAD,AD=AD,∠EDA=∠FDA, ∴△AED≌△AFD(ASA). 12、(2010年宁德市)(本题满分13分)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.⑴ 求证:△AMB≌△ENB;⑵ ①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;⑶ 当AM+BM+CM的最小值为时,求正方形的边长.EA DB CNM【答案】解:⑴∵△ABE是等边三角形,∴BA=BE,∠ABE=60°.∵∠MBN=60°,∴∠MBN-∠ABN=∠ABE-∠ABN.即∠BMA=∠NBE.又∵MB=NB,∴△AMB≌△ENB(SAS).⑵①当M点落在BD的中点时,AM+CM的值最小.FEA DB CNM②如图,连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小. ………………9分理由如下:连接MN.由⑴知,△AMB≌△ENB,∴AM=EN.∵∠MBN=60°,MB=NB,∴△BMN是等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM. 根据“两点之间线段最短”,得EN+MN+CM=EC最短∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.⑶过E点作EF⊥BC交CB的延长线于F,∴∠EBF=90°-60°=30°.设正方形的边长为x,则BF=x,EF=.在Rt△EFC中,∵EF2+FC2=EC2,∴()2+(x+x)2=. 解得,x=(舍去负值).∴正方形的边长为. - 5 -中考资源网期待您的投稿!zkzyw@。
