
Matlab数据归一化方法汇总.doc
11页几个要说明的函数接口:[Y,PS] = mapminmax(X)[Y,PS] = mapminmax(X,FP)Y = mapminmax('apply',X,PS)X = mapminmax('reverse',Y,PS)用实例来讲解,测试数据 x1 = [1 2 4], x2 = [5 2 3];>> [y,ps] = mapminmax(x1)y = -1.0000 -0.3333 1.0000ps = name: 'mapminmax' xrows: 1 xmax: 4 xmin: 1 xrange: 3 yrows: 1 ymax: 1 ymin: -1 yrange: 2其中y是对进行某种规范化后得到的数据,这种规范化的映射记录在结构体ps中.让我们来看一下这个规范化的映射到底是怎样的?AlgorithmIt is assumed that X has only finite real values, and that the elements of each row are not all equal.y = (ymax-ymin)*(x-xmin)/(xmax-xmin) + ymin;[关于此算法的一个问题.算法的假设是每一行的元素都不想相同,那如果都相同怎么办?实现的办法是,如果有一行的元素都相同比如xt = [1 1 1],此时xmax = xmin = 1,把此时的变换变为y = ymin,matlab内部就是这么解决的.否则该除以0了,没有意义!]也就是说对x1 = [1 2 4]采用这个映射 f: 2*(x-xmin)/(xmax-xmin)+(-1),就可以得到y = [ -1.0000 -0.3333 1.0000]我们来看一下是不是: 对于x1而言 xmin = 1,xmax = 4;则y(1) = 2*(1 - 1)/(4-1)+(-1) = -1; y(2) = 2*(2 - 1)/(4-1)+(-1) = -1/3 = -0.3333; y(3) = 2*(4-1)/(4-1)+(-1) = 1;看来的确就是这个映射来实现的.对于上面algorithm中的映射函数 其中ymin,和ymax是参数,可以自己设定,默认为-1,1;比如:>>[y,ps] = mapminmax(x1)>> ps.ymin = 0;>> [y,ps] = mapminmax(x1,ps)y = 0 0.3333 1.0000ps = name: 'mapminmax' xrows: 1 xmax: 4 xmin: 1 xrange: 3 yrows: 1 ymax: 1 ymin: 0 yrange: 1则此时的映射函数为: f: 1*(x-xmin)/(xmax-xmin)+(0),是否是这样的这回你可自己验证.O(∩_∩)O如果我对x1 = [1 2 4]采用了某种规范化的方式, 现在我要对x2 = [5 2 3]采用同样的规范化方式[同样的映射],如下可办到:>> [y1,ps] = mapminmax(x1);>> y2 = mapminmax('apply',x2,ps)y2 = 1.6667 -0.3333 0.3333即对x1采用的规范化映射为: f: 2*(x-1)/(4-1)+(-1),(记录在ps中),对x2也要采取这个映射.x2 = [5,2,3],用这个映射我们来算一下.y2(1) = 2(5-1)/(4-1)+(-1) = 5/3 = 1+2/3 = 1.66667y2(2) = 2(2-1)/(4-1)+(-1) = -1/3 = -0.3333y2(3) = 2(3-1)/(4-1)+(-1) = 1/3 = 0.3333X = mapminmax('reverse',Y,PS)的作用就是进行反归一化,讲归一化的数据反归一化再得到原来的数据:>> [y1,ps] = mapminmax(x1);>> xtt = mapminmax('reverse',y1,ps)xtt = 1 2 4此时又得到了原来的x1(xtt = x1);Matlab 数字归一化问题(by yingzhilian) 归一化化定义:我是这样认为的,归一化化就是要把你需要处理的数据经过处理后(通过某种算法)限制在你需要的一定范围内。
首先归一化是为了后面数据处理的方便,其次是保正程序运行时收敛加快在matlab里面,用于归一化的方法共有三种:(1)premnmx、postmnmx、tramnmx(2)prestd、poststd、trastd(3)是用matlab语言自己编程premnmx指的是归一到[-1 1],prestd归一到单位方差和零均值3)关于自己编程一般是归一到[0.1 0.9] 具体用法见下面实例为什么要用归一化呢?首先先说一个概念,叫做奇异样本数据,所谓奇异样本数据数据指的是相对于其他输入样本特别大或特别小的样本矢量下面举例:m=[0.11 0.15 0.32 0.45 30; 0.13 0.24 0.27 0.25 45];其中的第五列数据相对于其他4列数据就可以成为奇异样本数据(下面所说的网络均值bp)奇异样本数据存在所引起的网络训练时间增加,并可能引起网络无法收敛,所以对于训练样本存在奇异样本数据的数据集在训练之前,最好先进形归一化,若不存在奇异样本数据,则不需要事先归一化具体举例:close allclearecho onclc%BP建模%原始数据归一化 m_data=[1047.92 1047.83 0.39 0.39 1.0 3500 5075; 1047.83 1047.68 0.39 0.40 1.0 3452 4912; 1047.68 1047.52 0.40 0.41 1.0 3404 4749; 1047.52 1047.27 0.41 0.42 1.0 3356 4586; 1047.27 1047.41 0.42 0.43 1.0 3308 4423; 1046.73 1046.74 1.70 1.80 0.75 2733 2465; 1046.74 1046.82 1.80 1.78 0.75 2419 2185; 1046.82 1046.73 1.78 1.75 0.75 2105 1905; 1046.73 1046.48 1.75 1.85 0.70 1791 1625; 1046.48 1046.03 1.85 1.82 0.70 1477 1345; 1046.03 1045.33 1.82 1.68 0.70 1163 1065; 1045.33 1044.95 1.68 1.71 0.70 849 785; 1044.95 1045.21 1.71 1.72 0.70 533 508; 1045.21 1045.64 1.72 1.70 0.70 567 526; 1045.64 1045.44 1.70 1.69 0.70 601 544; 1045.44 1045.78 1.69 1.69 0.70 635 562; 1045.78 1046.20 1.69 1.52 0.75 667 580];%定义网络输入p和期望输出tpauseclcp1=m_data(:,1:5);t1=m_data(:,6:7);p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t)%设置网络隐单元的神经元数(5~30验证后5个最好) n=5;%建立相应的BP网络pauseclcnet=newff(minmax(pn),[n,2],{'tansig','purelin'},'traingdm');inputWeights=net.IW{1,1};inputbias=net.b{1};layerWeights=net.IW{1,1};layerbias=net.b{2};pauseclc% 训练网络net.trainParam.show=50;net.trainParam.lr=0.05;net.trainParam.mc=0.9;net.trainParam.epochs=200000;net.trainParam.goal=1e-3;pauseclc%调用TRAINGDM算法训练BP网络net=train(net,pn,tn);%对BP网络进行仿真A=sim(net,pn);E=A-tn;M=sse(E)N=mse(E)pauseclcp2=[1046.20 1046.05 1.52 1.538 0.75; 1046.05 1046.85 1.538 1.510 0.75; 1046.85 1046.60 1.510 1.408 0.75; 1046.60 1046 .77 1.408 1.403 0.75; 1046.77 1047.18 1.403 1.319 0.75];p2=p2';p2n=tramnmx(p2,minp,maxp);a2n=sim(net,p2n);a2=postmnmx(a2n,mint,maxt)echo offpauseclc程序说明:所用样本数据(见m_data)包括输入和输出数据,都先进行归一化,还有一个问题就是你要进行预测的样本数据(见本例p2)在进行仿真前,必须要用tramnmx函数进行事先归一化处理,然后才能用于预测,最后的仿真结果要用postmnmx进行反归一,这时的输出数据才是您所需要的预测结果。
个人认为:tansig、purelin、logsig是网络结构的传递函数,本身和归一化没什么直接关系,归一化只是一种数据预处理方法 需要说明的事并不是任何问题都必须事先把原始数据进行规范化,也就是数据规范化这一步并不是必须要做的,要具体问题具体看待,测试表明有时候规范化后的预测准确率比没有规范化的预测准确率低很多.就最大最小值法而言,当你用这种方式将原始数据规范化后,事实上意味着你承认了一个假设就是测试数据集的每一模式的所有特征分量的最大值(最小值)不会大于(小于)训练数据集的每一模式的所有特征分量的最大值(最小值),但这条假设显然过于强,实际情况并不一定会这样.使用平均数方差法也会有同样类似的问题.故数据规范化这一步并不是必须要做的,要具体问题具体看待. [faruto 按]实现上面的规范化代码:复制内容到剪贴板 代码:function normal = normalization(x,kind)% by Li Yang BNU MATH Email:farutoliyang@ :516667408。
