好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

EXCEL显著性水平置信度置信区间.doc

14页
  • 卖家[上传人]:平***
  • 文档编号:15166731
  • 上传时间:2017-11-03
  • 文档格式:DOC
  • 文档大小:2.01MB
  • / 14 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 帮我通俗的解释下显著性水平和置信水平这两个概念通俗的理解是咋样的啊,显著水平的 0.05 和 0.01 是什么意思,越高越好还是越低越好?除了 0.05 和 0.01 外还有别的值么?置信度和置信区间又是什么意思?置信度越高越好么?回答:首先,置信水平和置信度应该是一样的,就是变量落在置信区间的可能性,“置信水平” 就是相信变量在设定的置信区间的程度,是个 0~1 的数,用 1-α 表示置信区间,就是变量的一个范围,变量落在这个范围的可能性是就是 1-α显著性水平就是变量落在置信区间以外的可能性,“显著”就是与设想的置信区间不一样,用 α 表示显然,显著性水平与置信水平的和为 1显著性水平为 0.05 时,α=0.05,1-α=0.95如果置信区间为(-1,1 ),即代表变量 x 在(-1,1 )之间的可能性为 0.950.05 和 0.01 是比较常用的,但换个数也是可以的,计算方法还是不变总之,置信度越高,显著性水平越低,代表假设的可靠性越高,越好置信度计算现认为置信度在此算法中应该是用户指定一个即可In general,due to the weak (logarithmic)dependence on T,small settings for T(i.e.,less than 0.1)do not have a large effect on the overall window size”。

      没找到较好的计算过程,先贴一段吧置信度:置信度,是指特定个体对待特定命题真实性相信的程度,也就是概率是对个人信念合理性的量度对概率的置信度解释表明,事件本身并没有什么概率,事件之所以指派有概率只是指派概率的人头脑中所具有的信念证据置信水平是指总体参数值落在样本统计值某一区内的概率;而置信区间是指在某一置信水平下,样本统计值与总体参数值间误差范围置信区间越大,置信水平越高置信度,也称为可靠度,或置信水平、置信系数,即在抽样对总体参数作出估计时,由于样本的随机性,其结论总是不确定的因此,采用一种概率的陈述方法,也就是数理统计中的区间估计法,即估计值与总体参数在一定允许的误差范围以内,其相应的概率有多大,这个相应的概率称作置信度一般情况下,置信度是表明抽样指标和总体指标的误差不超过一定范围的概率保证度,用 F(t)来表示,在大样本(n>30)条件下,置信度 F(t)是概率度 t 函数,概率度越大,置信度越越大假设我们指出测量结果的准确性有 95%的可靠性,这个 95%就称为置信度 (P),又称为置信水平,它是指人们对测量结果判断的可信程度置信水平(Confidence level),是描述 GIS 中线元素与面元素的位置不确定性的重要指标之一。

      置信水平表示区间估计的把握程度,置信区间的跨度是置信水平的正函数,即要求的把握程度越大,势必得到一个较宽的置信区间,这就相应降低了估计的准确程度.简单地从数学角度分析一下首先明确其统计模型的类型,加入把每个对象的感觉量化为分数的话,例如从 0~100 之间的某个数字,那么该统计的结果即 3000 个数值,应该近似服从于正态分布即,当结果受到若干个彼此影响力差不多的因素影响时,所得的大量结果服从正态分布如果调查不是上述那样简单,则基本思路是:先将结果量化为数值,再根据影响结果的因素的特征来分类,看它具体符合哪种分布类型具体的置信度设置:它应当是样本容量(例如上面的“3000”)和数值结果波动范围的函数也就是说,你得到的结果会在某个特定数值附近波动,你希望知道的是波动范围到底有多大简单的说,置信度随着所取范围增大而减小,例如假设平均值为 50 分,那么 45~55 之间的可能性显然比 35~65 之间小,也就是置信度低,而出现在 0~100 之间的置信度则是 100%,因为全部范围就这么大另外,样本容量一般有利于提高置信度,即人数越多所得结果越可靠,不过在达到一定界限之后对于提高置信度贡献就很小了,所以一般取一定容量就足够了。

      具体估算置信度时,利用所得到的结果(平均值和样本方差)计算出一个表征偏离程度的数,然后在任何一本概率统计的书后查表,表中给出的是偏离程度与置信百分数的对应关系基本上就是这个道理,更具体的涉及到操作层面的东西,恐怕还是要参考有关书籍,按图索骥会更稳妥些例如在 10000 个样本中,要得到 95%的置信度,大概需要抽取至少 600份样本确定调查样本量的计算公式,可以从统计教材中找到,例如:n=Z[(2×S)2/d]2其中:N:代表所需要样本量Z:置信水平的 Z 统计量,如 95%置信水平的 Z 统计量为 1.96S:总体的标准差d:置信区间的 1/2,在实际应用中就是容许误差,或者调查误差但是总体标准差往往难以确定,所以按经验,这个总体数量,抽取 600 份左右当然,如果分层分类控制得好,也可以少一些样本置信度是区间估计里的概念,显著性水平是假设检验里的概念置信度是一个比较接近于 1 的数字,如 0.9,0.95,0.99 等,显著性水平是一个比较接近于 0 的数字,如 0.01, 0.05,0.1 等置信水平是 1-a,显著性水平是 a,在区间估计商,只关注置信度或置信水平 1-a,而显著性水平是假设检验中的概念。

      置信度或置信水平是正确的概率,显著性水平是犯错误的概率,置信度可以直接理解为所做的估计有多大的把握,比如有 95%的把握,观测值落在所给出的区间中可以这么说:置信度是人为规定的,是检验是否发生小概率的标准,显著性水平则是数据本身是否有差异,一般用 P 表示,P 越小越好, 例如,P<0.05 ,说明差异显著期望两组数不同,但假设它们完全相同,概率是 95%、98 %( 置信度),但处理后的结果发现数在置信区间外,即发生了小概率事件,P<0.05 或P<0.01 ,那么既然发生了小概率事件,则两组数据不同,选择置信度 0.95 和0.98 是不同的,就要剔除一个离群数据,选择高置信度的结果就更可靠置信区间是一个期望轴,以T检验为例,以样本情况推断总体情况,如果总体多出现在置信区间外,则推翻原假设,差异显著的检验其实是想证明两数据不同,但只能假设相同推翻这个假设,才能证明它们不同[转载]置信区间与置信度置信区间或称置信间距,是指在某一置信度时,总体参数所在的区域距离或区域长度置信度又称显著性水平,意义阶段,信任系数等,是指估计总体参数落在某一区间时,可能犯错误的概率,用符号 α 表示例如 .95 置信区间是指总体参数落在该区间之内,估计正确的概率为95%,而出现错误的概率为 5%(α=.05),由此可见:.95 置信间距=.05 显著性水平的置信间距,或.05 置信度的置信间距。

      .99 置信间距=.01 显著性水平的置信间距,或.01 置信度的置信间距显著性水平在假设检验中,还指拒绝虚无假设时可能出现的犯错误的概率水平区间估计的原理与标准误区间估计是根据样本分布的理论,用样本分布的标准误(SE)计算区间长度,解释总体参数落入某置信区间可能的概率区间估计包括成功估计的概率大小及估计范围大小两个问题人们在解决实际问题时,总希望估计值的范围小一点,成功的概率大一些但在样本容量一定的情况下,二者不可兼得如果使估计正确的概率加大些,势必要将置信区间加长,若使正确估计的概率为 1.00,即完全估计正确,则置信区间就会很长,也就等于没作估计了这就像在百分制的测验中你估计一个人的得分可能为 0 至 100 分之间一样反之,如果要使估计的区间变小,那就势必会使正确估计的概率降低统计分析中一般规定:正确估计的概率,也即置信水平为.95 或.99,那么显著性水平则为.05 或.01,这是依据.05 或.01 属于小概率事件,而小概率事件在一次抽样中是不可能出现的原理规定的区间估计的原理是样本分布理论即在进行区间估计值的计算及估计正确概率的解释上,是依据该样本统计量时分布规律样本分布的标准误(SE)。

      也就是说,只有知道了样本统计量的分布规律和样本统计量分布的标准误才能计算总体参数可能落入的区间长度,才能对区间估计的概率进行解释,可见标准误及样本分布对于总体参数的区间估计是十分重要的样本分布可提供概率解释,而标准误的大小决定区间估计的长度,如果标准误越小可使置信区间的长度变短,而估计成功的概率仍可保持较高水平一般情况下,加大样本容量可使标准误变小 平均数分布的概率下面以平均数的区间估计为例,说明如何根据平均数的样本分布及平均数分布的标准误,计算置信区间和解释成功估计的概率第五章已讲到,当总体方差已知时样本平均数的分布为正态分布或渐近正态分布样本平均数的平均数?,平均数的离散程度即平均数分布的标准差(简称标准误写作?或?), 根据正态分布,可以说:有 68.26%的平均数落在 μ±1 标准误之间,有 95%的平均数落在 μ±1.96 标准误之间,有 99%的平均数落在 μ±2.58 标准误之间等等图 6—1 平均数分布的概率或者说:μ±1 标准误之间包含所有平均数的 68.26%,μ±1.96 标准误之间包含所有平均数的 95%,μ±2.58 标准误之间包含所有平均数的 99%,等等。

      只要符合正态分布,平均数的分布一定遵循按正态分布理论所计算出的概率平均数的区间估计可是在实际的研究中,只能得到一个样本的平均数,我们可将这个样本平均数看作无限多个样本平均数之中的一个当只知样本平均数( ),而不知总体平均数时,可根据平均数的样本分布进行推理如果有所有平均数的 68.26%的平均数落在 μ 上下一个标准误之间,那么可以推理:所有平均数中有 68.26%的平均数加上一个或减去一个标准误这一间距之内将包含总体参数 μ,也就是说有 68.26%的机会被包含在任何一个平均数±1 标准误之间,或者说,估计 μ 在平均数±1 标准误之间正确的概率为 68.26%同样的道理可以说:μ 在平均数±1.96 标准误之间的正确概率为 95%,μ 在平均数±2.58 标准误之间的正确概率为 99%,以及其他任何可能的概率那为什么置信区间用平均数加、减一定数量的标准误来计算呢?这是因为样本平均数究竟 μ 落在的左侧还是右侧是不知道的,故用平均数±Zα/2 标准误(Zα/2 为样本分布的横坐标值),这一段距离表示置信区间如果能知平均数落在 μ 的左侧,那么平均数至平均数+1.96 标准误这一区间内包含 μ 的可能为 97.5%,若能确知平均数在 μ 之右侧,那么平均数至平均数+1.96 标准误这一区间包含 μ 的可能亦为 97.5%,这样不仅可以缩短置信区间的长度,还可提高正确估计的概率,但事实上这是做不到的。

      见图 6—2图 6-2 平均数的区间估计置信度当推论出总体参数 μ 按一定的概率落在某一置信区间时,实际的均值究竟落在分布的哪个位置上并不能确知,它也有可能落在分布的两侧尾部,这时若说 μ 在平均值±Zα/2 标准误之间便是错误的了,不过出现这种错误的可能概率可以根据样本分布进行计算:其概率为 α例如估计 μ 在 平均数±1.96 标准误之间正确的概率为 95%,则错误的概率为 5%,这 5%来自样本分布的左右两尾端各 2.5%的样本平均数,因为这些平均数±1.96 标准误这一段距离中并不包含 μ 在内见图 6-3: 图 6-3 置信度示意图 其他总体参数的估计原理与平均数的估计原理相同,但所依据的样本分布及标准误不同本文来源于 响石潭 http://www.chinadoctor.org用 Excel 进行参数估计总体均值和比例的区间估计参数估计所要解决的问题是根据样本数据对总体的参数进行点估计和区间估计根据样本对总体的均值、比例或方差进行点估计,就是计算样本的均值、比例或方差有关计算在 Excel 或 SPSS 中的实现我们前面已经讲解过了根据样本对总体的均值区间估计时,根据条件的不同可以选择 t 分布。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.