好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

轴的设计与校核.doc

14页
  • 卖家[上传人]:s9****2
  • 文档编号:394962280
  • 上传时间:2024-02-05
  • 文档格式:DOC
  • 文档大小:217KB
  • / 14 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 概述轴是机械中非常重要的零件,用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递轴的分类根据工作过程中轴的中心线形状的不同,轴可以分为:直轴和曲轴根据工作过程中的承载不同,可以将轴分为:?传动轴:指主要受扭矩作用的轴,如汽车的传动轴心轴:指主要受弯矩作用的轴心轴可以是转动的,也可以是不转动的转轴:指既受扭矩,又受弯矩作用的轴转轴是机器中最常见的轴根据轴的外形,可以将直轴分为光轴和阶梯轴;根据轴内部状况,又可以将直轴分为实心轴和空轴的设计⑴轴的工作能力设计主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算⑵轴的结构设计根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核3.轴的材料轴是主要的支承件,常采用机械性能较好的材料常用材料包括:?碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料常用牌号有:30、35、40、45、50。

      采用优质碳钢时,一般应进行热处理以改善其性能受力较小或不重要的轴,也可以选用Q235Q255等普通碳钢合金钢:对于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,可以选用合金纲合金钢具有更好的机械性能和热处理性能,但对应力集中较敏感,价格也较高设计中尤其要注意从结构上减小应力集中,并提高其表面质量铸铁:对于形状比较复杂的轴,可以选用球墨铸铁和高强度的铸铁它们具有较好的加工性和吸振性,经济性好且对应力集中不敏感,但铸造质量不易保证轴的结构设计根据轴在工作中的作用,轴的结构取决于:轴在机器中的安装位置和形式,轴上零件的类型和尺寸,载荷的性质、大小、方向和分布状况,轴的加工工艺等多个因素合理的结构设计应满足:轴上零件布置合理,从而轴受力合理有利于提高强度和刚度;轴和轴上零件必须有准确的工作位置;轴上零件装拆调整方便;轴具有良好的加工工艺性;节省材料等1.轴的组成轴的毛坯一般采用圆钢、锻造或焊接获得,由于铸造品质不易保证,较少选用铸造毛坯轴主要由三部分组成轴上被支承,安装轴承的部分称为轴颈;支承轴上零件,安装轮毂的部分称为轴头;联结轴头和轴颈的部分称为轴身轴颈上安装滚动轴承时,直径尺寸必须按滚动轴承的国标尺寸选择,尺寸公差和表面粗糙度须按规定选择;轴头的尺寸要参考轮毂的尺寸进行选择,轴身尺寸确定时应尽量使轴颈与轴头的过渡合理,避免截面尺寸变化过大,同时具有较好的工艺性。

      2.结构设计步骤设计中常采用以下的设计步骤:分析所设计轴的工作状况,拟定轴上零件的装配方案和轴在机器中的安装情况根据已知的轴上近似载荷,初估轴的直径或根据经验确定轴的某径向尺寸根据轴上零件受力情况、安装、固定及装配时对轴的表面要求等确定轴的径向(直径)尺寸根据轴上零件的位置、配合长度、支承结构和形式确定轴的轴向尺寸考虑加工和装配的工艺性,使轴的结构更合理零件在轴上的安装保证轴上零件可靠工作,需要零件在工作过程中有准确的位置,即零件在轴上必须有准确的定位和固定零件在轴上的准确位置包括轴向和周向两个方面⑴零件在轴上的轴向定位和固定常见的轴向定位和固定的方法采用轴肩、各种挡圈、套筒、圆螺母、锥端轴头等的多种组合结构轴肩分为定位轴肩和非定位轴肩两种利用轴肩定位结构简单、可靠,但轴的直径加大,轴肩处出现应力集中;轴肩过多也不利于加工因此,定位轴肩多在不致过多地增加轴的阶梯数和轴向力较大的情况下使用,定位轴肩的高度一般取3~6mm滚动轴承定位轴肩的高度需按照滚动轴承的安装尺寸确定非定位轴肩多是为了装配合理方便和径向尺寸过度时采用,轴肩高度无严格限制,一般取为1~2mm?套筒定位可以避免轴肩定位引起的轴径增大和应力集中,但受到套筒长度和与轴的配合因素的影响,不宜用在使套筒过长和高速旋转的场合。

      挡圈的种类较多,且多为标准件,设计中需按照各种挡圈的用途和国标来选用⑵零件在轴上的周向定位和固定常见的周向定位和固定的方法采用键、花键、过盈配合、成形联结、销等多种结构键是采用最多的方法同一轴上的键槽设计中应布置在一条直线上,如轴径尺寸相差不过大时,同一轴上的键最好选用相同的键宽轴的结构工艺性⑴从装配来考虑:应合理的设计非定位轴肩,使轴上不同零件在安装过程中尽量减少不必要的配合面;为了装配方便,轴端应设计45°的倒角;在装键的轴段,应使键槽靠近轴与轮毂先接触的直径变化处,便于在安装时零件上的键槽与轴上的键容易对准;采用过盈配合时,为了便于装配,直径变化可用锥面过渡等⑵从加工来考虑:当轴的某段须磨削加工或有螺纹时,须设计砂轮越程槽或退刀槽;根据表面安装零件的配合需要,合理确定表面粗糙度和加工方法;为改善轴的抗疲劳强度,减小轴径变化处的应力集中,应适当增大其过渡圆角半径,但同时要保证零件的可靠定位,过渡圆角半径又必须小于与之相配的零件的圆角半径或倒角尺寸轴的强度计算进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法对于只传递扭矩的轴(传动轴),按扭转强度条件计算;?对于只承受转矩的轴(心轴),按弯曲强度条件计算;对于既受到转矩的作用,又受到弯矩作用的轴(转轴),应按弯扭合成强度条件计算;?重要的轴还需按疲劳强度条件进行精确校核。

      对于瞬时过载很大或应力循环不对称性较为严重的轴,还应校核静强度扭转强度计算根据轴的转矩的大小,通过计算切应力来建立轴的强度条件这种方法计算简便,但计算精度较低,主要用于初步估算轴径以便进行结构设计和以传递转矩为主的传动轴强度条件为:?T——轴所传递的扭矩,?Wr轴抗扭截面模量,对实心轴二轴的直径:?P――轴所传递的功率(kw)?n轴的转速(r/min);?[t]――许用扭转切应力(Mpa1. ?C与材料有关的系数当轴所受弯矩较大时,C值宜取较大值,反之相反最小直径处有键槽时,单键轴径需增加3%双键轴径需增加7%弯扭合成强度计算根据轴在工作中的受力状况,常见的轴既要受到扭矩的作用又要受到弯矩的作用根据强度理论,对轴所受到的弯矩和扭矩进行合成,用合成后的当量弯矩产生的应力作为轴所受到的应力,对影响轴疲劳强度的其它因素,采用降低需用应力的方法来考虑,建立轴的强度分析条件,即为按弯扭合成计算轴的强度具体计算步骤为:根据结构设计结果,确定外载荷作用点、大小、方向和支点位置,绘制轴的受力计算简图;确定坐标系,将外载荷分解为水平面和垂直面内分力,求出水平、垂直两平面支反力;绘制水平面、垂直平面的弯矩MXMY图;计算合成弯矩,绘制合成弯矩图皿二恥皿;绘制转矩图;按照强度理论「求出当量弯矩Me绘制当量弯矩图;式中a是根据转矩性质而定的应力校正系数。

      对于不变的转矩,取Q屛;对于脉动的转矩,取[%];对于对称循环的转矩,取a=1[(T+1b]、[(TOb]、[(T-1b]分别为材料在静应力、脉动应力和对称循环应力状态下的许用弯曲应力实际设计中,常按脉动转矩计算确定危险截面,校核危险截面轴径W轴的抗弯截面模量;?[(T-1b]――许用弯曲应力疲劳强度精确(安全系数强度)校核计算对于使用场合重要,要求计算精度较高的重要轴,按弯扭合成强度计算时,未考虑轴的细部结构,需进行更准确的计算,通常采用安全系数法具体计算步骤为:同弯扭合成步骤1;绘制弯矩图和扭矩图;确定危险截面,求出截面上的弯曲应力(T和切应力T及应力变化情况;弯矩作用下的安全系数为S(T:计算疲劳强度的安全系数转矩作用下的安全系数为St:?kN――寿命系数;?(T-1、T-1——对称循环应力时材料的弯曲疲劳限和扭转疲劳限;?k°、kT――弯曲和扭转式的应力集中系数;?(3为表面质量系数;?£°、£T尺寸系数;ermtm平均应力;Wt平均应力折合为应力幅的等效系数,°0、T0――脉动循环应力时材料的弯曲疲劳极限和扭转疲劳极限1. 校核疲劳强度:S>[S],[S]――许用安全系数静强度计算对于工作过程中瞬时过载很大或应力循环不对称性较为严重的轴,轴上的尖峰载荷及时作用实践很短和出现次数很少,不足以引起疲劳破坏,但却能使轴产生塑性变形。

      设计时应校核静强度1)按弯扭合成校核:强度条件为:-°、T:X「;式中:0=M/Wt0=T/Wt;对于实心圆轴0=10M/d3,t0=5T/d3,代入上式可得式中:Me静强度当量弯矩;[(T0]――静强度许用应力计算时M和T应取最大载荷的数值许用应力取[(T]=(Ts/S为材料的屈服极限,S为安全系数,其值根据实践经验确定当载荷或应力不能精确计算,材料性能无把握时,上述S值应增大20%~50%轴的刚度计算轴属于细长杆件类零件,对于重要的或有刚度要求的轴,要进行刚度计算轴的刚度有弯曲刚度和扭转刚度两种弯曲刚度用轴的挠度y或偏转角0来表征,扭转刚度用轴的扭转角©来表征轴的刚度计算,就是计算轴在工作载荷下的变形量,并要求其在允许的范围内,即:y<[y],0<[0];©<[©]1. 弯曲刚度计算进行轴的弯曲刚度计算时,通常按材料力学的方法计算挠度和偏转角,常用的有当量轴径法和能量法1)当量轴径法适用于轴的各段直径相差较小且只需作近似计算的场合它是通过将阶梯轴转化为等效光轴后求等效轴的弯曲变形等效光轴的直径为:式中:di阶梯轴的第i段直径(i=1~n,n为段数);li为阶梯轴的第I段长度若作用于光轴的载荷F位于支承跨矩L的中间位置时,则轴在该处的挠度y和支承处的偏转角0分别为:牝昭式中:E――材料的弹性模量(N/mm2);I――光轴剖面的惯性矩,(mm4)⑵能量法适用于阶梯轴的弯曲刚度的较精确计算。

      它是通过对轴受外力作用后所引起的变形能的分析,应用材料力学的方法分析轴的变形扭转刚度计算轴受转矩作用时,对于钢制实心阶梯轴,其扭转角的计算式为:1TLI°°1心(rad)式中:G材料的剪切弹性模量,钢的G=81000N/mmTi、li、di分别为第i段轴所受的转矩(N.mm、长度(mm和直径(mm)提高轴的疲劳强度和刚度的措施设计过程中,除合理选材外还可从结构安排和工艺等方面采取措施来提高轴的承载能力分析轴上零件特点,减小轴受载荷根据轴上安装的传动零件的状况,合理布置和合理设计可以减小轴的受载对于受弯矩和转矩联合作用的转轴,可以改进轴和轴上零件结构,使轴的承载减少改进轴的结构,减少应力集中避免轴的剖面尺寸发生较大的变化,采用较大的过渡圆角半径,当装配零件的倒角很小时,可以采用内凹圆角或加装隔离环;尽可能不在轴的受载区段切制螺纹;可能时适当放松零件与轴的配合,在轮毂上或与轮毂配合区段两端的轴上加开卸载槽,以降低过盈配合处的应力集中等⑶改进轴的表面质量,提高轴的疲劳强度减小表面及圆角处的表面粗糙度;对零件进行表面淬火、渗氮、渗碳、碳氮共渗等处理;对零件表面进行碾压加工或喷丸硬化处理等可以显著提高轴的承载能力。

      4)采用空心轴,减轻质量,提高强度和刚度(内径dO/外径d)为0.6的空心轴与直径为d的实心轴相比,空心轴的剖面模量减少13%,质量减少36%;d0/d仍为0.6的空心轴与同质量的实心轴相比,剖面模量可增加1.7倍轴的振动计算受变载荷作用的轴,如果载荷的变化频率与轴的自振频率相同或接近时,轴会发生共振共振使轴的运动状态发生很大变化,严重时会使轴或轴上零件甚至整个机器遭受破坏,发生共振现象时的转速,称为轴的临界转速。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.