
2025届广东省佛山市超盈实验中学高一上数学期末统考试题含解析.doc
12页2025届广东省佛山市超盈实验中学高一上数学期末统考试题注意事项1.考生要认真填写考场号和座位序号2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回一、选择题:本大题共10小题,每小题5分,共50分在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若的最小正周期为,则的一条对称轴是( )A. B.C. D.2.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过20的素数中,随机选取2个不同的数,其和等于20的概率是( )【注:如果一个大于1的整数除了1和自身外无其它正因数,则称这个整数为素数.】A. B.C. D.3.把表示成,的形式,则的值可以是()A. B.C. D.4.设,则函数的零点所在的区间为( )A. B.C. D.5.已知集合,,全集,则()A. B.C. D.I6.函数的部分图象如图示,则将的图象向右平移个单位后,得到的图象解析式为()A. B.C. D.7.函数,,则函数的图象大致是()A. B.C. D.8.下列四个函数中,与函数相等的是A. B.C. D.9.方程的实数根所在的区间是( )A. B.C. D.10.函数的值域为( )A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。
11.已知幂函数的图像过点,则___________.12.已知函数的定义域为,当时,,若,则的解集为______13. “”是“”的_______条件.(填“充分不必要”、“必要不充分”、“充分必要”、“既不充分又不必要”中的一个)14.若,则___________.15.若,则_____________.16.直线,当变动时,所有直线都通过定点______.三、解答题:本大题共5小题,共70分解答时应写出文字说明、证明过程或演算步骤17.已知集合,集合当时,求及;若,求实数m的取值范围18.设函数,其中,且.(1)求的定义域;(2)当时,函数图象上是否存在不同两点,使过这两点的直线平行于轴,并证明.19.近年来,随着我市经济的快速发展,政府对民生越来越关注市区现有一块近似正三角形的土地(如图所示),其边长为2百米,为了满足市民的休闲需求,市政府拟在三个顶点处分别修建扇形广场,即扇形和,其中与、分别相切于点,且与无重叠,剩余部分(阴影部分)种植草坪.设长为(单位:百米),草坪面积为(单位:万平方米).(1)试用分别表示扇形和的面积,并写出的取值范围;(2)当为何值时,草坪面积最大?并求出最大面积.20.某形场地,, 米(、足够长).现修一条水泥路在上,在上),在四边形中种植三种花卉,为了美观起见,决定在上取一点,使且.现将铺成鹅卵石路,设鹅卵石路总长为米. (1)设,将l表示成的函数关系式; (2)求l的最小值.21.已知,,且函数有奇偶性,求a,b的值参考答案一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由最小正周期公式有:,函数的解析式为:,函数的对称轴满足:,令可得的一条对称轴是.本题选择C选项.2、A【解析】随机选取两个不同的数共有种,而其和等于20有2种,由此能求出随机选取两个不同的数,其和等于20的概率【详解】在不超过20的素数中有2,3,5,7,11,13,17,19共8个,随机选取两个不同的数共有种,随机选取两个不同的数,其和等于20有2种,分别为(3,17)和(7,13),故可得随机选取两个不同的数,其和等于20的概率,故选:3、B【解析】由结合弧度制求解即可.【详解】∵,∴故选:B4、B【解析】根据的单调性,结合零点存在性定理,即可得出结论.【详解】在单调递增,且,根据零点存在性定理,得存在唯一的零点在区间上.故选:B【点睛】本题考查判断函数零点所在区间,结合零点存在性定理的应用,属于基础题.5、B【解析】根据并集、补集的概念,计算即可得答案.【详解】由题意得,所以故选:B6、D【解析】由图像知A="1," ,,得,则图像向右移个单位后得到的图像解析式为,故选D7、C【解析】先判断出为偶函数,排除A; 又,排除D;利用单调性判断B、C.【详解】因为函数,,所以函数.所以定义域为R.因为,所以为偶函数.排除A;又,排除D;因为在为增函数,在为增函数,所以在为增函数.因为为偶函数,图像关于y轴对称,所以在为减函数.故B错误,C正确.故选:C8、D【解析】分别化简每个选项的解析式并求出定义域,再判断是否与相等.【详解】A选项:解析式为,定义域为R,解析式不相同;B选项:解析式为,定义域为,定义域不相同;C选项:解析式为,定义域为,定义域不相同;D选项:解析式为,定义域为R,符合条件,答案为D.【点睛】函数相等主要看:(1)解析式相同;(2)定义域相同.属于基础题.9、B【解析】令,因为,且函数在定义域内单调递增,故方程的解所在的区间是,故选B.10、C【解析】由二倍角公式化简,设,利用复合函数求值域.【详解】函数,设,,则,由二次函数的图像及性质可知,所以的值域为,故选:C.二、填空题:本大题共6小题,每小题5分,共30分。
11、【解析】先设幂函数解析式,再将代入即可求出的解析式,进而求得.【详解】设,幂函数的图像过点,,,,故答案为:12、##【解析】构造,可得在上单调递减.由,转化为,利用单调性可得答案【详解】由,得,令,则,又,所以在上单调递减由,得,因为,所以,所以,得故答案为:.13、充分不必要【解析】解不等式,利用集合的包含关系判断可得出结论.【详解】由得,解得或,因Ü或,因此,“”是“”的充分不必要条件.故答案为:充分不必要.14、1【解析】由已知结合两角和的正切求解【详解】由,可知tan(α+β)=1,得,即tanα+tanβ=,∴故答案为1【点睛】本题考查两角和的正切公式的应用,是基础的计算题15、【解析】平方得16、 (3,1)【解析】将直线方程变形为,得到,解出,即可得到定点坐标.【详解】由,得,对于任意,式子恒成立,则有,解出,故答案为:(3,1).【点睛】本题考查直线过定点问题,直线一定过两直线、的交点.三、解答题:本大题共5小题,共70分解答时应写出文字说明、证明过程或演算步骤17、(1),或; (2)或.【解析】(1)当时,Q=,由集合的交、并、补运算,即可求解;(2)由集合的包含关系,得Q⊆P,讨论①Q=∅,②Q≠∅,运算可得解【详解】(1)当时,Q=,所以,或.(2)因为P∩Q=Q,所以Q⊆P,①当m-1>3m-2,即时,Q=∅,满足题意,②当m-1≤3m-2,即时,,解得,综合①②可得:实数m的取值范围或.【点睛】本题主要考查了集合的交、并、补运算及集合的包含关系的应用,其中解答中熟记集合的运算的基本方法,以及合理利用集合的包含关系,分类讨论求解是解答的关键,着重考查了分类讨论思想,以及运算与求解能力,属于基础题.18、(1)当时,定义域为;当时,定义域为.(2)不存在,证明见解析.【解析】(1)首先根据题意得到,再分类讨论解不等式即可.(2)首先根据单调性定义得到函数在为增函数,从而得到函数图像上不存在不同两点,使过这两点的直线平行于轴.【详解】(1)由题知:,①当时,即,则,定义域为.②当时,即,则,定义域为.综上,当时,定义域为;当时,定义域为.(2)因为,所以函数的定义域为,任取,且,因为,所以,因为,所以,所以,即,所以,函数在为增函数,所以函数图象上不存在不同两点,使过这两点的直线平行于轴.19、(1),,;(2)时,草坪面积最大,最大面积为万平方米.【解析】(1)因为,所以可得三个扇形的半径,圆心角都为,由扇形的面积公式可得答案;(2)用三角形面积减去三个扇形面积可得草坪面积,再利用二次函数可求出最值.【详解】(1),则,,在扇形中,的长为,所以,同理,.∵与无重叠,∴,即,则.又三个扇形都在三角形内部,则,∴.(2)∵,∴,∴当时,取得最大值,为.故当长为百米时,草坪面积最大,最大面积为万平方米.【点睛】弧度制中求扇形弧长和面积的关键在于确定半径和扇形圆心角弧度数,解题时通常要根据已知条件列出方程,运用方程思想求解,强化了数学运算的素养.属于中档题.20、(1)见解析;(2)20.【解析】(1)设,可得:,;(2)利用二次函数求最值即可.试题解析:(1)设米,则即,(2), 当,即时,取得最小值为,的最小值为20.答:的最小值为20.21、为奇函数,,【解析】由函数奇偶性的定义列方程求解即可【详解】若为奇函数,则,所以恒成立,即,所以恒成立,所以,解得,所以当为奇函数时,,若为偶函数,则,所以恒成立,得,得,不合题意,所以不可能是偶函数,综上,为奇函数,,。
