
课标引领探数学规律导航破坚冰.doc
6页初中数学论文课标引领探数学规律导航破坚冰——浅析初中数学教材规律化设计与教学 城南中学王巧萍摘 要:新课程标准是课程教学的风向标,它的作用是导航新课标初中数学的内容编 排符合学生的认知规律,它对内容的调整增删也是以学生的认知规律为依据进行的教师要 潜心下去探究数学学科的规律,在吃透教材的基础上,把规律性的东西教给学生,把轻松高 效学习数学的方法教给学生,引导学生走进数学王国的宫殿,让学生在轻松、愉快、高效中 学习数学将初中数学内容安排的规律与初中生的认知规律做到有机的结合进行教育教学, 就会收到事半功倍的效果关键词:数学教学 课标引领 规律导航任何事物都有其规律,只要我们潜下心去寻找,是不难发现的义务教育阶段,初中数 学的内容安排同样有其自身规律初中生正处在长身体长知识的时期,他们的认知水平也继 续朝着由熟到生、由简到繁、由易到难、市浅到深的方向发展,他们的思维由形彖思维向抽 象思维逐步过渡义务教育阶段初中数学内容安排的顺序和初中生的思维发展是一致的,数 学内容安排的顺序与学习数学的思维是同步人的认识思维由低级向高级发展,rti抽象思维 向形象思维发展,这是规律,初中生的认知规律是如此,所有人的认知规律也是如此。
新课 标对初中数学的内容编排、调整就是以人的认知规律为依据进行的我们教师若将初中数学 内容安排的规律与初中生的认知规律做到有机的结合进行教育教学,就会收到事半功倍的效果一.寻觅课标规律探数学循序前进新课标是课程教学的导航标,我们不但要认真解读它,更要吃透它新课标初中数学教材与实验本教材相比,内容调整了不少,为什么耍这样调整,调整的FI的是什么,我们不难发现,新课标数学内容的调整更科学、更合理、更符合学生循序渐进的认知规律且看整个初中数学内容的安排:1、顾全局顺序渐进七年级上册(62)第一章有理数(19) 第二章 整式的加减(8)第三章一元一次方程(19)第四章 几何图形初步(16)七年级下册(62)第五章相交线与平行线(14)第六章 实数(8)第七章 平面直角坐标系(7)第八章二元一次方程组(12)第九章 不等式与不等式组(11)第十章数据的收集整理与描述(10)八年级上册(62)第^一章三角形(8)第十二章全等三角形(11)第十=章轴对称(14)第十四章整式的乘除与因式分解(14)第十五章分式(15)八年级下册(62)第十六章 二次根式(9)第十七章勾股定理(9)第十八章四边形(15)第十九章一次函数(17)第二十章数据的分析(12)九年级上册(62)第二十•章 元二次方程(13)第二十二章二次函数(12) 第二十三章旋转(9)第二十叫章圆(16)第二十五章 概率初步(12)九年级下册(48)第二十六章反比例函数(8)第二十七章相似(14)第二十八章锐角三角函数(12)第二十九章投影与视图(10)表中有划线的地方,是新课标数学在实验本的基础上作了相应的调整。
对照原来的章节 分布,实数从八上提前到了七下;而三角形由原七下退后到八上;分式由八下提前到八上; 二次根式由九上提前到八下;一次函数由八上推迟到八下;二次函数rti九下提前到九上;而 反比例函数由原八下推迟到九下,整整推迟了一年章节的推迟或提前目的是什么呢?一次函数后移,化解了学生对函数的学习难点;二次 根式提前,便于解决勾股定理中根式化简等问题;分式提前,加强与整式的联系,有利于运 算能力的培养;实数提前,便于学生理解点与实数对的一一对应,以及不等式的解集;在图 形与儿何这一块中,把三角形与全等三角形及轴对称直接连接,加强了知识的整体性与连贯 性的学习理解以反比例函数后移,二次函数前移为例:二次函数前移使九年级下的任务大大减轻,原 九下章节中二次函数、相似、锐角三角函数都是重点章节,三章放在一块,学生学习任务繁 重,因为这几块内容都是中考里必考的内容,也都是初中数学的重点内容把二次函数提前, 插入反比例函数,大大减轻了九下的学习任务,学生能学得轻松这样一调整同时也加强了 二次函数与一元二次方程的密切联系,学生在学习了一元二次方程的基础上学习二次函数接 樺自然、天衣无缝大家都知道一元二次方程与二次函数有很多很多地方是相通的,也有共 同的规律好找,这样学生消化起來就简单了。
新课标编委对教材内容的调整,不是空穴來风, 毫无依据的,它的最大依据就是要合逻辑思维顺序、符合学生的认知规律整体如此,局部 模块内容也是如此2、看局部连环相扣(1)探整合合逻辑在新课标初中数学里,对实验本的内容作了整合,如“几何与图形”这一模块内容作了 调整变化,实验本中分四个方面的内容即“图形的认识”、“图形与变换”、“图形与坐标”、 “图形与证明”,新课标调整为三个方面内容,即“图形的性质”、“图形的变化”、“图 形与坐标”,这三部分中的“图形的性质”基本上是整合了实验稿中的第一部分和第四部分 而成,而其他两个部分与原来的两部分基本不变别少看这第一部分和第四部分的整合,“图 形的认识”与"图形与证明”两者联系紧密,尤其是“图形与证明”里的图形这一内容与图 形的认识这一内容有重叠,没有必要再出现,整合了这一内容,简单明了,学习起来方便省 力省时,完全符合学生的认知规律,合逻辑思维推理2) 允增删步规律新课标初中数学新增了不少内容同时也删除了不少内容,在代数、儿何里都有如:能进行简单的整式乘法运算中增加了一次式与二次式相乘;能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等;会利用待定系数法确定一次函数的表达式;了解平行于同一条直线的两条直线平行;了解并证明圆内接四边形的对角互补;尺规作图:过一点作已知直线的垂线;已知一直角边和斜边作直角三角形;作三角形的 外接圆、内切圆;作圆的内接正方形和正六边形。
在“图形与儿何”(实验稿为“空间与图形”)领域,删除了:探索并了解圆与圆的位 置关系;在统计与概率”部分删除了:极差、频数折线图等内容在“数与代数”领域,删除了:①对“大数”的认识与应用一一“能对含有较大数字 的信息作出合理的解释与推断”②对有效数字的要求一一“了解有效数字的概念”)③ 对一元一次不等式组的要求一一“能够根据具体问题中的数量关系,列出一元一次不等式组, 解决简单的问题对所学内容的增加,目的是让学生更全面的了解学握数学内容;对所学内容有的删除, 更多的是降低了学习的难度,数学内容难度的降低,意味着学生容易学,容易掌握,同时也 意味着学习内容的减少新课标这么处理,从知识衔接的角度看,降低了难度与整个初中数 学内容衔接更为贴切自然,使整个内容和谐融为一体;从学生认知规律发展角度看,更符合 学生的认知规律由浅到深,有序自然,做到认知不跳跃Z所以删除是因为这些内容过于深 奥,理应安排在更高的年级学习,安排在初中数学里,不符合初中学生的认知规律,(3) 定选学源认知在初中数学里无论是“数与代数”还是“图形与儿何”中既有必学的内容,也有选学 的内容如在儿何中,选学的内容有:*了解平行线性质定理的证明*探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧*探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等*了解相似三角形判定定理的证明新课标里删除了部分教材内容,减轻了学生的学习负担;增加部分内容,目的是让学 生更全面的了解掌握数学内容;增删的内容可以理解,但增加的选学内容乂有什么用呢?只 要我们潜心下去想一想,不难发现新增的选学内容,既丰富了教材的内容,给学生的白主学 习,给师生的自主教学留出了极大的空间。
从学生层面来说,可以让有余力的学生去学习他 喜欢感兴趣的内容,让他遨游在数学王国,为他将来成就于数学铺就前进的道路;从教师层 面来说,可以充分发挥教师的特长和潜能,因为是选学选教,教师可以根据自己的特长来选 取自己最为拿手的内容来教,因为是拿手,教师能讲深透,能讲出其中的奥秘,能为学生打 开数学王国的大门,能把学生领进瑰丽堂皇的数学宫殿,能让学生在瑰丽堂皇的数学宫殿里 尽情地淘宝,能让学生摘取数学皇冠上的明珠,能让学生在淘宝的过程川培养学习数学的浓 厚兴趣这样看来追随学生的认知思维编排教材是编委的首选意图新课标初中数学内容的调整是从学生的认知规律来考虑,那么我们在处理数学教学内 容时,要尽量按照教材的编排顺序去执行,踏踏实实去教学,可是现实中有的教师自作聪明, 随心所欲任意打乱教材自行处理,殊不知这样的做法是违反学生的认知规律新课标数学教 材是经专家权威儿经审核才出炉,一般情祝下是不能随意变更因为它的教学思维是非常严 慎,它不留白,不跳跃,做到了环环相扣,循序前进二、寻觅学科规律悟数学触类旁通1、寻共性,举一反三轻松学任何事物都有它的规律,教材安排有它自身规律,学生认知有他的规律,那么学习数学 当然也有它的自身规律,寻找到学习数学的规律,教给学生学习数学的方法,学习的效果就 会成倍成倍地提高,以笔者在全市小班化课堂教学改革示范课执教中布置学生学生所做的习题为例:例1、如右图.货轮0在航行过程中,发现灯塔A在它南偏东60的方向上,同时,在它北偏东40,南偏西10,西北(即北偏西45 )方向上又分别发现了 西客轮B,货轮C和海岛D.仿照表示灯塔方位的方法 画出表示客轮B,货轮C和海岛D方向的射线.例2、图下+ A, B, C三点分别代表邮局、商店和学校.邮局和商店分别在学校的北偏西方向, 邮局又在商店的北偏东方向.那么,图中A点应该是—,B点应该是 , C点应该是 。
例3、如何表示乙地对甲地的方位角乙地甲地这三题的练习它有个共同的规律就是要先找准基点,画出十字坐标,如果基点没找准, 十字坐标不画出,做起來就费劲,像例1找准了基点A,例2找准了基点学校,例3找准了 基点甲地从基点画出十字坐标,那么这三题就不用吹灰之力,迎刃而解了解答这三题的 共同规律是找出基点、画出十字坐标,规律找到了,那么我们教师在指导学生就不必对三题 都进行一一分析,只要讲好一题,指明规律即可,可把大量的时间还给学生,学生就会学习 轻松,效果倍增共性规律在数学中较为普遍,我们在数学教学中经常使用,值得注意的是我们教师要 善于总结,把规律指给学生,教会学生使用,让学生在使用规律的同时进一步吃透内容2、觅特殊触类旁通豁然悟理科有理科的学习规律,数学思维它讲究顺序渐进,它不同于欣赏诗歌文学欣赏诗 歌用的是跳跃的形象思维,数学思维它用的主要是抽象思维,它很讲究逻辑的联系,逻辑思 维一旦发生断裂或跳跃就很难把它连接起来数学学科有其自身规律,它不同于其它学科的 学习规律,虽然有些规律有共性相通,但细加分析,任何事物都是有其个性,数学学科的学 习也不例外比如初中数学里的代数、方程与几何、图形的学习,运用的数学思维方式完全是两回 事,一个主要运用的是逻辑推理思维,一个主耍运用的是空间推理思维,学习运用的思维 不同,学习的方法也就不同。
如有一列数a.,弧出…,从笫二个数开始,每一个数都等于1与它前面那个数的倒数的 差,若ai=4,则为32010 =解答这题,只要先推算出前面的几个数据,后面的数据就自然而然的出来了,数据推算, 靠的是逻辑思维,空间思维基本上没有起作用例如:正方形纸片ABCD, M, N分别是AD, BC的中点,把BC向上翻折,使点C恰好落在MN 上的P点处,BE为折痕,求ZPBE的度数?(如图)这题涉及到MN既垂直BC又平分BC,它运用的是垂直平分线的特殊性质,连接PC就能得 到PC=PB,再运用折叠知识,此题就解决了连线、折叠它所运用的是空间推理思维,如 杲用逻辑推理思维去解这一题就行不通,这就是它们的特殊性。
