好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

经济数学的模型分类作业.doc

10页
  • 卖家[上传人]:pu****.1
  • 文档编号:435058887
  • 上传时间:2022-07-13
  • 文档格式:DOC
  • 文档大小:137.50KB
  • / 10 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • word经济数学模型分类作业一、 按数学模型的性质分为:1、确定性模型:确定性模型是一个由完全肯定的函数关系〔因果关系〕所决定的、不包含任何随机成份的模型这种模型包括由微分方程所描述的数学模型,可用解析解法、数值解法和电模拟方法求解对于确定性模型,只要设定了输入和各个输入之间的关系,其输出也是确定的,而与实验次数无关确定性模型事实上是一种简化了的随机性模型举例:模型名称:大坝位移确定性模型模型:把坝体某考察点的位移视为几种外界条件贡献的总和式中:i——某考察点,△——位移,t——时间,——水位变化引起的弹性位移分量,——变温引起的弹性位移分量,——由于混凝土和岩石的非弹性性质引起的不可恢复的位移分量2、 随机性模型:随机性模型是指含有随机成份的模型 与确定性模型的不同可以很好地用以下例子解释:在赌场里赌大小,如果有人认为三次连开大第四次必然开小,那么此人所用的既是确定性模型但是常识告诉我们第四次的结果并不一定与之前的结果相关联概率模型、统计回归模型、马氏链模型都属于随机性模型举例:模型名称:报童的诀窍模型:报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回购进太少,不购卖,会少赚钱;购进太多,卖不完,将要赔钱。

      他应该如何确定每天购进量,以获得最大收入每天需求量是随机的,所以每天收入是随机的模型假设:1、 假设报纸没分购进价为b,零售价为a,退回价为c,a>b>c2、 每天购进量为n份,需求量为r份的概率为f(r),r=0,1,2…3、 每天购进量为n份的日平均收入为G〔n〕模型构成:求n使G〔n〕最大二、 按数学模型的变量和函数结构的变动情况分为:1、连续性模型:模型中的任何量或关系的微小变动是相对稳定的模型中的时间变量是在一定区间内变化的模型称为连续性模型一般用微分方程描述如:人口增长模型举例:模型名称:连续增长模型模型:标准的连续增长模型方程式dN/dt=(b-d)N=rN 积分式Nt=e^rt在很短的时间dt内,b,d为瞬时出生率、死亡率,N为种群大小r为每员增长率,与密度无关2、非连续性模型:模型中某些量或关系的变化是连续的,有跳跃的模型举例:模型名称:马尔可夫模型模型:马尔可夫链是随机变量X1,X2,X3…的一个数列这些变量的X围,即他们所有可能取值的集合,被称为“状态空间〞,而Xn的值如此是在时间n的状态如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,如此P(Xn+1=x∣X0,X1,X2,…,Xn)=P(Xn+1=x∣Xn)这里x为过程中的某个状态。

      3、离散性模型:模型中的变量是由可数点列构成的变量〔主要是时间变量〕取离散的模型称为离散性模型在处理集中参数模型时,也可以将时间变量离散化,所获得的模型称为离散时间模型离散时间模型是用差分方程描述的举例:模型名称:原生动物的裂体生殖模型模型:为t世代种群大小,是t世代下一代三、 根据模型的参数分为:1、固定参数模型:在模型化过程中所涉与的参数只需给定一次举例:模型名称:戈登股利增长模型模型:不变增长模型有三个假定条件: 1、 股息的支付在时间上是永久性的2、 股息的增长速度是一个常数3、 模型中的贴现率大于股息增长率V为股票的初始价值Di每期股票的收益,R为回报率2、自适应参数模型:需要随着经济原型的变化对参数进展必要的调整,这时参数往往属于一个参数空间举例:模型名称:期望模型模型:在经济活动中,经济活动主体经常根据他们对某些经济变量未来走势的“预期〞变动来改变自己的行为决策也就是说,某些经济变量的变化或多或少会受到另一些经济变量预期值的影响为了处理这种经济现象,我们可以将解释变量预期值引入模型建立“期望模型〞即:  Xt=X(t-1)+γ[Xt-X(t-1)] 其中Yt是应变量,Xt 是解释变量预期值,ut为随机扰动项。

      四、 按模型与时间的关系分为:1、 动态模型:模型的行为随时间变化,而且时间是独立的变量,其经济原型和时间的关系密切应当指出,按步骤、阶段而变化〔与时间长度无关〕的模型有时也称为动态模型在经济中,动态模型是一类应用广泛的模型,尤其是在宏观方面动态模型用于描述系统的过程和行为,例如描述系统从一种状态到另一种状态的转换动态模型描述与操作时间和顺序有关的系统特征、影响更改的事件、事件的序列、事件的环境以与事件的组织借助时序图、状态图和活动图,可以描述系统的动态模型动态模型的每个图均有助于理解系统的行为特征对于开发人员来说,动态建模具有明确性、可视性和简易性的特点举例:模型名称:生产计划模型模型:公司要对某产品制定周的生产计划,产品每周的需求量、生产和贮存费用、生产能力的限制、初始库存量等都是的,试在满足需求的条件下,确定每周的生产量,使周的总费用最少决策变量是第周的生产量,记作如下数据与函数关系:第周的需求量:第周产量为时的生产费为;第周初贮存量为时这一周的贮存费为;第周的生产能力限制为;初始〔〕与终结〔〕时贮存量均为零按照最短路问题的思路,设从第周初贮存量为到〔周末〕过程完毕的最小费用函数为,如此如下逆向递推公式成立。

      〔1〕而与满足 〔2〕  这里贮存量是状态变量,〔2〕式给出了相邻阶段的状态在决策变量作用下的转移规律,称为状态转移规律在用〔1〕式计算时,的取值X围——允许状态集合由〔2〕式与允许决策集合决定2、 稳态模型:模型的行为不随时间而变化〔时间可以是参量〕,其经济原型对时间的变化相对稳定,也就是说研究对象仍是动态过程,但建模的目的并不是寻求动态过程中每个瞬间的性态,而是研究某种意义下稳定状态的特征,特别是当时间充分长以后动态过程的变化趋势,需要考查模型的平衡状态是否稳定稳态模型是指要描述的系统各量之间的关系是不随时间的变化而变化的,一般都用代数方程来表达静态模型展示了待开发系统的结构特征类图是系统静态模型的一局部举例:模型名称:效应函数模型模型:u(x,y) =xy其中,x,y分别是两个商品的消费量,均不随时间的变化而变化U〔x,y〕是消费这样一个消费束给消费者带来的效用,a>0,b>03、 拟稳态模型:一个非稳态的经济原型用一系列静态模型来表示,其特点是模型的经济原型是动态的,而这一系列模型中的每一个经济模型是稳态的。

      五、 按模型的经济背景分为:宏观经济模型:宏观经济研究的是一个国家整体经济的运行情况,以与政府如何运用经济政策来影响国家整体经济的运作,其运行目标是促进社会经济开展和福利水平宏观经济模型主要包括总需求-总供应模型、IS-LM模型、SNA模型、国民收入决定模型、经济周期模型、索洛模型、菲利普斯曲线模型等举例:模型名称:国民收入决定模型模型:总支出AE是用货币表现的总需求在一个完全的模型中,AE由总消费支出C,总投资支出I,政府购置支出GP和国外部门的购置支出即出口EX构成:AE=C+I+GP+EXNI与AE相等时的NI是均衡的国民收入消费者的可支配收入DI可以分为两大局部:消费C和储蓄S因此,可支配收入可以写为:DI=C+S微观经济模型:微观经济研究的是单个经济单位的经济活动,旨在解决资源配置问题,级生产什么、如何生产和为谁生产,以实现个体效益的最大化微观经济模型主要包括供应与需求模型、效用基数与序数模型、生产本钱模型、完全竞争市场的供求模型、垄断市场价格与产量模型、纳什均衡模型等蛛网模型 垄断的又古诺模型,斯威齐模型举例:模型名称:蛛网模型模型:蛛网模型的根本假定是:商品的本期产量Qts决定于前一期的价格Pt-1,即供应函数为Qts=f(Pt-1),商品本期的需求量Qtd决定于本期的价格Pt,即需求函数为Qtd=f(Pt〕。

      根据以上的假设条件,蛛网模型可以用以下三个联立的方程式来表示: Qtd=α-β•Pt Qts=-δ+γ•Pt-1 Qtd=Qts其中,α、β、δ和γ均为常数且均大于零由于区别了经济变量的时间先后,因此,蛛网模型是一个动态模型六、 按模型学科背景分为:1、运筹学模型:  主要是线性规划、整数规划、动态规划等当面的运筹学应用和模型,可以用来解决农作物的生产安排问题、运输问题、最优路线问题等生活实际问题举例:模型名称:线性规划模型模型:假设有м项有限的资源要在n项活动中间进展分配给各项资源规定脚标1,2,…,м,给各项活动规定脚标1,2,…,n,设x j〔即决策变量,有时亦称控制变量〕为j项活动的水平,j=1,2,…,n决策变量x1,x2,…,x n的一组数值代表一个方案〔或计划〕设 z为选定的某个效益量度〔总效益指标〕,它的数值衡量当采取一组活动水平〔x1,x2,…,x n〕时所得到的总效益设c j为每一单位的x j所提供的效益设 b j为i项资源在分配时可被利用的量,最后,设a ij〔i=1,2,…,м;j=1,2,…,n〕为i项资源被每单位j 项活动所消耗〔或使用〕的量。

      于是,将各项资源分配给各项活动以获得最优化结果的规划问题具有如下数学模型:  选择x1,x2,…,x n的值,借以使z=c1x1+c2x2+……+c n x n达到最大,且满足如下各项限制条件:a11x1+ a12x2+……a1n x n≤b1a21x1+ a22x2+……+a2n x n≤b2a m1x1+a m2x2+……+amnxn≤bm  与 x1≥0,x2≥0,…,xn≥0这个数学模型可以等价地表述为如下更为简洁的矩阵形式:选择x的值,借以使z=cx达到最大,且满足如下条件:  A X≤b  x≥0式中:  x =〔x1,x2…,x n〕〔n维列向量〕  c=〔c1,c2,…c n〕〔n维行向量〕  b=〔b1,b2,…b m〕〔m维列向量〕  〔м×n矩阵〕2、 经济控制论模型:从宏观经济总体出发,利用经济控制论、现代控制理论,以与输入、输出、反应、协调、优化等根本概念建立的宏观经济系统的数学模型,并通过计算机仿真运行来实现对宏观经济系统的最优控制经济控制论模型是指应用经济控制论和现代控制理论对宏观经济系统进展辨识和估计而建立的模型,以便通过计算机仿真运行来实现宏观经济系统的最优控制或次优控制。

      经济控制论模型是从宏观经济系统总体出发,利用经济控制论以与输入、输出、反应、协调、优化等根本概念建立的宏观经济系统的数学模型它为宏观经济系统的最优控制提供了新的思想和工具举例:模型名称:单周期连续型随机库存控制模型 模型: 只要知道该物资的单位进价、售价、回收价、损失顾客时的罚款以与日需求量的概率分布,就可以求出可使利润期望值最大的一次订货批量3、计量经济学模型:以统计数据为根底,以数学工具为手段,在一定的经济理论的指导下建立的经济模型它具体又可分为线性回归模型、时间序列模型、协整模型和面板数据等计量经济模型包括一个或一个以上的随机方程式,它简洁有效地描述、概括某个真实经济系统的数量特征,更深刻地揭示出该经济系统的数量变化规律是由系统或方程组成,方程由变量和系数组成其中,系统也是由方程组成举例:模型名称:多元线性回归模型模型:多元线性回归模型的一般形式为  Yi=β0+β1X1i+β2X2i+…+βkXki+μi i=1,2,…,n  其中。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.