好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

重点初中几何辅助线大全 最全.doc

17页
  • 卖家[上传人]:zussh****1496
  • 文档编号:272045709
  • 上传时间:2022-04-01
  • 文档格式:DOC
  • 文档大小:1,010.50KB
  • / 17 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 三角形中作辅助线的常用方法举例一、延长已知边构造三角形:例如:如图7-1:已知AC=BD,AD⊥AC于A ,BC⊥BD于B, 求证:AD=BC分析:欲证 AD=BC,先证分别含有AD,BC的三角形全等,有几种方案:△ADC与△BCD,△AOD与△BOC,△ABD与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角证明:分别延长DA,CB,它们的延长交于E点, ∵AD⊥AC BC⊥BD (已知) ∴∠CAE=∠DBE =90° (垂直的定义) 在△DBE与△CAE中 ∵ ∴△DBE≌△CAE (AAS) ∴ED=EC EB=EA (全等三角形对应边相等) ∴ED-EA=EC-EB 即:AD=BC当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件二 、连接四边形的对角线,把四边形的问题转化成为三角形来解决三、有和角平分线垂直的线段时,通常把这条线段延长例如:如图9-1:在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E 求证:BD=2CE 分析:要证BD=2CE,想到要构造线段2CE,同时CE与∠ABC的平分线垂直,想到要将其延长。

      证明:分别延长BA,CE交于点F ∵BE⊥CF (已知) ∴∠BEF=∠BEC=90° (垂直的定义)在△BEF与△BEC中, ∵ ∴△BEF≌△BEC(ASA)∴CE=FE=CF (全等三角形对应边相等) ∵∠BAC=90° BE⊥CF (已知) ∴∠BAC=∠CAF=90° ∠1+∠BDA=90°∠1+∠BFC=90° ∴∠BDA=∠BFC在△ABD与△ACF中 ∴△ABD≌△ACF (AAS)∴BD=CF (全等三角形对应边相等) ∴BD=2CE四、取线段中点构造全等三有形例如:如图11-1:AB=DC,∠A=∠D 求证:∠ABC=∠DCB分析:由AB=DC,∠A=∠D,想到如取AD的中点N,连接NB,NC,再由SAS公理有△ABN≌△DCN,故BN=CN,∠ABN=∠DCN下面只需证∠NBC=∠NCB,再取BC的中点M,连接MN,则由SSS公理有△NBM≌△NCM,所以∠NBC=∠NCB问题得证证明:取AD,BC的中点N、M,连接NB,NM,NC则AN=DN,BM=CM,在△ABN和△DCN中 ∵ ∴△ABN≌△DCN (SAS) ∴∠ABN=∠DCN NB=NC (全等三角形对应边、角相等)在△NBM与△NCM中 ∵∴△NMB≌△NCM,(SSS) ∴∠NBC=∠NCB (全等三角形对应角相等)∴∠NBC+∠ABN =∠NCB+∠DCN 即∠ABC=∠DCB。

      巧求三角形中线段的比值例1. 如图1,在△ABC中,BD:DC=1:3,AE:ED=2:3,求AF:FC解:过点D作DG如图2,BC=CD,AF=FC,求EF:FD解:过点C作CG如图3,BD:DC=1:3,AE:EB=2:3,求AF:FD解:过点B作BG如图4,BD:DC=1:3,AF=FD,求EF:FC解:过点D作DG如图5,BD=DC,AE:ED=1:5,求AF:FB2. 如图6,AD:DB=1:3,AE:EC=3:1,求BF:FC 答案:1、1:10; 2. 9:1二 由角平分线想到的辅助线图中有角平分线,可向两边作垂线也可将图对折看,对称以后关系现角平分线平行线,等腰三角形来添角平分线加垂线,三线合一试试看角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等对于有角平分线的辅助线的作法,一般有两种①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形至于选取哪种方法,要结合题目图形和已知条件与角有关的辅助线(一)、截取构全等例1. 如图1-2,AB证:BD=2CE。

      分析:给出了角平分线给出了边上的一点作角平分线的垂线,可延长此垂线与另外一边相交,近而构造出等腰三角形例3.已知:如图3-3在△ABC中,AD、AE分别∠BAC的内、外角平分线,过顶点B作BFAD,交AD的延长线于F,连结FC并延长交AE于M求证:AM=ME分析:由AD、AE是∠BAC内外角平分线,可得EA⊥AF,从而有BFDAECBDCBAMBDCAEDCBA图,△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B,C在AE的异侧,BD⊥AE于D,CE⊥AE于E求证:BD=DE+CE四 由中点想到的辅助线 三角形中两中点,连接则成中位线三角形中有中线,延长中线等中线一)、由中点应想到利用三角形的中位线例2.如图3,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线分别交EF的延长线G、H求证:∠BGE=∠CHE证明:连结BD,并取BD的中点为M,连结ME、MF,∵ME是ΔBCD的中位线,∴MECD,∴∠MEF=∠CHE,∵MF是ΔABD的中位线,∴MFAB,∴∠MFE=∠BGE,∵AB=CD,∴ME=MF,∴∠MEF=∠MFE,从而∠BGE=∠CHE。

      二)、由中线应想到延长中线例3.图4,已知ΔABC中,AB=5,AC=3,连BC上的中线AD=2,求BC的长解:延长AD到E,使DE=AD,则AE=2AD=2×2=4在ΔACD和ΔEBD中,∵AD=ED,∠ADC=∠EDB,CD=BD,∴ΔACD≌ΔEBD,∴AC=BE,从而BE=AC=3在ΔABE中,因AE2+BE2=42+32=25=AB2,故∠E=90°,∴BD===,故BC=2BD=2例4.如图5,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线求证:ΔABC是等腰三角形证明:延长AD到E,使DE=AD仿例3可证:ΔBED≌ΔCAD,故EB=AC,∠E=∠2,又∠1=∠2,∴∠1=∠E,∴AB=EB,从而AB=AC,即ΔABC是等腰三角形三)、直角三角形斜边中线的性质例5.如图6,已知梯形ABCD中,ABBECDADMCDEDADBDABDCEF2:如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小. 3:如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.中考应用例题:以的两边AB、AC为腰分别向外作等腰Rt和等腰Rt,连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系.(1)如图① 当为直角三角形时,AM与DE的位置关系是 ,线段AM与DE的数量关系是 ;(2)将图①中的等腰Rt绕点A沿逆时针方向旋转(0<<90)后,如图②所示,(1)问中得到的两个结论是否发生改变并说明理由.(二)、截长补短1.如图,中,AB=2AC,AD平分,且AD=BD,求证:CD⊥AC2:如图,AC∥BD,EA,EB分别平分∠CAB,∠DBA,CD过点E,求证;AB=AC+BD3:如图,已知在内,,,P,Q分别在BC,CA上,并且AP,BQ分别是,的角平分线。

      求证:BQ+AQ=AB+BP4:如图,在四边形ABCD中,BC>BA,AD=CD,BD平分,求证:5(三)、借助角平分线造全等1:如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:OE=OD2:(06郑州市中考题)如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F. (1)说明BE=CF的理由;(2)如果AB=,AC=,求AE、BE的长.3.如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F请你判断并写出FE与FD之间的数量关系;(第23题图)OPAMNEBCDFACEFBD图①图②图③(2)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立若成立,请证明;若不成立,请说明理由四)、旋转1:正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数. 2:D为等腰斜边AB的中点,DM⊥DN,DM,DN分别交BC,CA于点E,F。

      1) 当绕点D转动时,求证DE=DF2) 若AB=2,求四边形DECF的面积3.如图,是边长为3的等边三角形,是等腰三角形,且,以D为顶点做一个角,使其两边分别交AB于点M,交AC于点N,连接MN,则的周长为 ;4.已知四边形中,,,,,,绕点旋转,它的两边分别交(或它们的延长线)于.当绕点旋转到时(如图1),易证.当绕点旋转到时,在图2和图3这两种情况下,上述结论是否成立若成立,请给予证明;若不成立,线段,又有怎样的数量关系请写出你的猜想,不需证明.(图1)(图2)(图3)5.已知:PA=,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.(1)如图,当∠APB=45°时,求AB及PD的长;(2)当∠APB变化,且其它条件不变时,求PD的最大值,及相应∠APB的大小.6.在等边的两边AB、AC所在直线上分别有两点M、N,D为外一点,且,,BD=DC. 探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及的周长Q与等边的周长L的关系.图1 图2 图3(I)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是 ; 此时 ; (II)如图2,点M、N边AB、AC上,且当DMDN时,猜想(I)问的两个结论还成立吗写出你的猜想并加以证明; (III) 如图3,当M、N分别在边AB、CA。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.