
2023年学科知识能力考试重点初中数学.pdf
46页数学学科知识与技能一、考试目的1 . 学科知识的掌握和运用掌握大学专科数学专业基础课程的知识、中学数学的知识具有在初中数学教学实践中综合而有效地运用这些知识的能力2 . 初中数学课程知识的掌握和运用理解初中数学课程的性质、基本理念和目的,熟 悉 《 全日制义务教育数学课程标准( 实验) 》( 以下简称《 课标》 )规定的教学内容和规定3 .数学教学知识的掌握和应用理解有关的数学教学知识,具有教学设计、教学实行和教学评价的能力二、考试内容模块与规定1 .学科知识 ( 4 1 % )数学学科知识涉及大学专科数学专业基础课程、高中数学课程中的必修内容和部分选修内容以及初中数学课程中的内容知识大学专科数学专业基础课程知识是指:数学分析、高等代数、解析几何、概率论与数理记录等大学专科数学课程中与中学数学密切相关的内容其内容规定是:准确掌握基本概念,纯熟进行运算,并可以运用这些知识去解决中学数学的问题高中数学课程中的必修内容和部分选修内容以及初中数学课程知识是指高中数学课程中的必修内容、选修课中的系列1 、2的内容以及选修3 —1 ( 数学史选讲) ,选修4 一1 ( 几何证明选讲) 、选修4 一2 ( 矩阵与变换) 、选修4 一4 ( 坐标系与参数方程) 、选修4 —5 ( 不等式选讲)以及初中课程中的所有数学知识。
其内容规定是:理解中学数学中的重要概念,掌握中学数学中的重要公式、定理、法则等知识,掌握中学常见的数学思想方法,具有空间想象、抽象概括、推理论证、运算求解、数据解决等基本能力以及综合运用能力2 .课程知识 (23%)了解初中数学课程的性质、基本理念和目的熟 悉 《 课标》所规定的教学内容的知识体系,掌 握 《 课标》对教学内容的规定能 运 用 《 课标》指导自己的数学教学实践3 .教学知识 (10%)掌握讲授法、讨论法、自学法、发现法等常见的数学教学方法 掌握概念教学、命题教学等数学教学知识的基本内容了解涉及备课、课堂教学、作业批改与考试、数学课外活动、数学教学评价等基本环节的教学过程掌握合作学习、探究学习、自主学习等中学数学学习方式掌握数学教学评价的基本知识和方法4 .教学技能 (26%)( 1)教学设计可以根据学生已有的知识水平和数学学习经验,准确把握所教内容与学生已学知识的联系可以根据《 课标》 的规定和学生的认知特性拟定教学目的、 教学重点和难点 能对的把握数学教学内容,揭示数学概念、法则、结论的发展过程和本质,渗透数学思想方法,体现应用与创新意识能选择适当的教学方法和手段,合理安排教学过程和教学内容,在规定的时间内完毕所选教学内容的教案设计。
2 ) 教学实行能创设合理的数学教学情境,激发学生的数学学习爱好,引导学生自主探索、猜想和合作交流能依据数学学科特点和学生的认知特性,恰本地运用教学方法和手段,有效地进行数学课堂教学能结合具体数学教学情境,对的解决数学教学中的各种问题 3 ) 教学评价能采用不同的方式和方法,对学生知识技能、数学思考、问题解决和情感态度等方面进行恰本地评价能对教师数学教学过程进行评价可以通过教学评价改善教学和促进学生的发展模 块 二 课 程 知 识第一章 初中数学课程的性质与基本理念数学是研究数量关系和空间形式的科学第一节:影响初中数学课程的重要因素1、初中数学课程是一门国家课程,内容重要涉及课程目的、教学内容、教学过程和评价手段它体现了国家从数学教育与教学的角度,对初中阶段学生实现最终培养目的的整体规划2、影响初中数学课程的重要因素涉及:( 1 )数 学 学 科 内 涵 :①数学科学自身的内涵( 数学的知识、方法和意义等)②作为教育任务的数学学科的内涵( 理解数学的整体性特性, 领悟相关的数学思想,应用数学解决问题的能力等)( 2 )社会发展现状:①当代社会的科学技术、人文精神中蕴含的数学知识与素养等②生活变化时数学课程的影响等③社会发展对公民基本数学素养的需求。
3 )学生心理特性初中数学课程是针对初中学生年龄特性和知识经验而设立的,因此学生的心理特性必然会影响着具体的课程内容①适合学生的数学思维特性②学生的知识、经验和环境背景第二节:初中数学课程性质义务教育阶段的数学课程是培养公民素质的基础课程, 具有基础性、 普及性和发展性义务教育阶段的数学课程能为学生未来生活、工作和学习奠定重要的基础 数学课程能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面得到发展一、基础性:①初中阶段的数学课程中应当有大量的内容是未来公民在平常生活中必须要用到的②初中阶段的教育是每一个学生必须经历的基础教育阶段,它将为其后续生存、发展打下必要的基础③由于数学学科是其他科学的基础, 因此数学课程内容也是学生在初中阶段学习其他课程的必要基础因此, 义务教育的数学课程能为学生未来生活、 工作和学习奠定重要的基础二、普及性:①初中阶段的数学课程应当在适龄少年中得到普及, 即每一个适龄的学生都有充足的机会学习它②初中数学课程内容应当可认为所有适龄学生在具有相应学习条件的前提下,通过自己的努力而掌握。
三、发展性:数学所具有的抽象性、逻辑严谨性、应用广泛性和特有的符号语言系统,所具有的模式化的数学思考方法,在培养学生的理性思维、发明能力以及促进学生知、情 、意的全面发展上具有不可替代的作用第三节:初中数学课程的基本理念基本理念反映出我们对数学、 数学课程、 数学教学以及评价等方面应具有的基本结识和观念、态度,它是制定和实行数学课程的指导思想《 标准》中的每一部份内容都要贯穿基本理念的思想和规定同时,教师作为课程的实行者,更应自觉树立起对的的数学观、数学课程观、数学教学观、评价观等数学教育观念,并用以指导自己的教学实践活动初中数学课程的基本理念重要表现五个方面•、课程内涵:数学课程应致力于实现义务教育阶段的培养目的,要面向全体学生,适合学生个性发展的需要,使得:人人能获得良好的数学教育,不同的人在数学上得到不同的发展 1 )要实现学生的全面发展( 2 )要关注全体学生的发展( 3 )应促使学生自主地发展二、课程内容:( 1 )自身要反映社会的需要、数学的特点 2 )构成不仅涉及数学的结果,也涉及数学结果的形成过程和蕴含的数学思想方法 3 )选择要符合学生的认知规律,贴近学生现实,有助于学生体验与理解,思考与探索。
( 4 )重视过程,组织要解决好过程与结果的关系;重视直观,解决好直观与抽象的关系;重视直接经验,解决好直接经验与间接经验的关系 5 )呈现应注意层次性和多样性三、教学过程:数学教学活动是师生积极参与、交往互动、共同发展的过程,有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者四、学习评价:学习评价的重要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改善教师教学五、信息技术与数学课程:( 1 )将信息技术作为学生从事数学活动的辅助性工具,涉及在探究学习对象的性质、应用知识解决问题等活动中 2 )将信息技术作为教师从事教学实践与研究的辅助工具 3 )将计算机等技术作为评价学生数学学习的辅助性工具第四节:数学课程核心概念( 1 0个 )( 背 )一、数感数感:关于数与数量、数量关系、运算结果估算等方面的感悟建立数感, 有助于理解现实生活中数的意义, 理解或表述具体情境中的数量关系二、符 号 意 识 ( 代数符号、几何符号)符号意识重要是指可以理解并且运用符号表达数、数量关系、变化规律;知道使用符号可以进行运算、推理,得到的结论具有一般性( 得到一般性结论) 。
符号意识重要表现在对数学符号的理解和运用方面,具体含义涉及:理解并且运用由数学符号表达的数、数量关系、变化规律和图形特性等;可以使用符号进行运算、推理,表达数学关系等建立符号意识有助于学生理解符号的使用, 符号的使用是数学表达和进行数学思考的重要形式三、空间观念空间观念重要是指根据物体特性抽象出几何图形, 根据几何图形想象出所描述的实际物体;想象出物体的方位和互相之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等物 体 ( 方位、互相之间关系)一一几何图形,图形的运动、变化一一描述四、几何直观运用图形描述和分析问题几何直观通常是个体认知、解决或使用数学对象的一种思维状态,具体表现在 “ 运用图形描述和分析问题”( 而这里的问题经常又不是几何问题) 可以帮助学生直观地理解数学,借助几何直观可以把复杂的数学问题变得简洁、形象,有助于整体把握数学对象,探索解决问题的思绪,并预测结果五、数据分析观念数据分析观念是个体自觉使用数据分析结果对事物做分析: 预测的意识和基本能力数据中蕴含信息、分析方法多样、数据随机性( 每次不同、多次有规律)它重要涉及:知道数据中蕴含着信息;结识到在现实生活中有许多问题应当先做调查研究,收集数据,再通过对数据做必要的分析才可以给出合理判断,也了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;并且通过对的的数据分析所得到的结果虽然合理,但也也许是错误的。
过程性规定:学生经历调查研究,收集解决数据的过程,通过数据分析作出判断,并体会数据中蕴涵着信息方法性规定:学生了解对于同样的数据可以有多种分析方法,需要根据问题的背景选择合适的分析方法体验性规定:通过度析体验随机性六、运算能力 法则、运算律的对的运算运算能力是一种典型的数学能力运算能力重要是指可以根据法则和运算律对的地进行运算的能力在提高运算能力的价值上,有明确的落脚点:培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题算理就是计算过程中的道理,是指计算过程中的思维方式,解 决 “ 为什么这样算” ,这样算的道理是什么算理一般由数学概念、运算规律、运算性质等构成 就是教师根据概念,性质,定义为依据对计算方法加以说明如:小数乘法的算理就是积的变化规律,小数除法的算理就是商不变的规律算法就是计算的方法,重要解决“ 如何计算”的问题通常是算理指导下的一些人为规定的操作环节,解决如何算得方便、准确的问题如:小数乘法的算法:先按照整数乘法算出积,再看因数中一共有几位小数就从积的右边数出几位点上小数点整 数 ( 小数)加法:算法:把相同数位对齐列出竖式,再从个位加起,满十向前一位进一。
算理:依据数的组成意义,推出相同计数单位( 分数单位)的数才干相加减算理也可以理解为加法互换律和结合律整 数 ( 小数)减法:算法:相同数位对齐,从个位减起,哪一位不够减就从前一位退一,在 本 位 上 加10再减算理:依据数的组成和意义概念,推出相同计数单位的数才干相加减十进制计数法算理是客观存在的规律,算法是人为规定的操作方法;算理为计算提供了对的的思维方式,保证了计算的合理性和对的性,算法为计算提供了快捷的操作方法 ,提高了计算的速度;算理是算法的理论依据,算法是算理的提炼和概括,它们是相辅相成的教学中不可放弃任何一方面七、推理能力推理能力也是一种典型的数学能力由于推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式, 所以培养学生的推理能力是数学教育的核 心 任 务 之 一 ( 推理的意义) 培养推理能力应贯穿与整个数学课程的各个学习内容、各种活动过程推理一般涉及合情推理和演绎推理合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断某些结果;即探索思绪一一已有经验+( 经验、直觉)+ ( 归纳、类比)演绎推理是从已有的事实( 涉及定义、公理、定理等)和拟定的规则( 涉及运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。
即证明结论一一 已有经验+ 拟定规则八、模型思想 抽象一数量关系( 方程、函数等)~ 结 果 f分析意义模型思想是实现应用数学解决问题的基本途径 模型思想的建立数学书体会和理解数学与外部世界联系的基本途径建模过程: 从现实生活或具体情境中抽象出数学问题, 用数学符号建立方程、不等式、函数等表达数学问题中的数量关系和变化规律,求出结果,并讨论结果的意义它表白:模型思想的建立是提高学生应用数学的意识和能力的重要要点九、应用意识学习数学的一个重要目的就是应用数学应用意识一一数学解释现实、现实抽象数学,创新意识一一发现和提出+ 独立思考+ 归 纳 推 理 ( 概念、原理和方法)两方面的含义:( 1 )要故意识得运用数学的概念、原理、方法解释现实世界中的现象,解决现实世界中的问题;( 2 )结识到现实生活中蕴含着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决规定发展学生的应用意识需要从两个方面予以贯彻:( 1 )在数学知识和方法的学习过程中实行“ 从情境入手” 一一让学生通过观测情境进而发现并提出数学问题;( 2 )在理解知识和方法的基础上,增 长 “ 用数学”的环节一一让学生故意识地应用所学数学知识解释现实生活中的有关现象,解决相应的问题。
十 、创新意识( 1 )个体创新意识的培养是现代( 初中阶段)数学教育的基本任务,应体现在数学教与学的过程中从义务教育阶段开始,贯穿于数学教育的始终 2 )创新意识的核心在于“ 独特” 、“ 新奇” 、“ 个性化” 学生自己发现和提出问题是创新的基础, 独立思考、 学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法这表白:“ 提出问题” 、“ 独立思考” 、“ 归纳一猜想一验证”等活动方式是创新意识形成的核心要素,也是教学实行的重要关注点第二章 初中数学课程目的具体内容:( 1 )获得适应社会生活和进一步发展所必需的数学知识、基本技能、基本思想、基本活动经验( 2 )体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力(3) 了解数学的价值,提高学习数学的爱好,增强学习学好数学的信心,养成良好的学习习惯,具有初步的创新意识和科学态度这三个目的通过“ 知识技能” “ 数学思考” “ 问题解决” “ 情感态度”四个方面加以体现针对了解知识的来龙去脉,明确提出“ 体会数学知识之间,数学与其他学科之间,数学与生活之间的联系”。
一、总体目的( “ 四基” 一一基础知识、基本技能、基本思想、基本活动经验)( 1 )基础知识:一般是指所涉及到的基本概念、基本性质、基本法则、基本公式等如 说 明1/4, 0.25, 25%的含义分数、小数、百分数是重要数的概念真分数通常表达部分与整体的关系,因此理解1 /4 ,要先理解哪个是整体的,如全班同学人数的1/4小数通常表达具体的量,如书桌的宽度是0.45米百分数是同分母 ( 同一标准) 的比值, 便于比较, 如去年比前年增长2 1 %,今年比去年增长2 5 % 2 )基本技能:涉及基本的运算、测量、绘图等技能如2 0以内加减乘除法,每分钟完毕8 - 1 0题作为参照大部分同学通过一定训练可以达成这个目的 3 )数学基本思想:数学的三个基本思想:抽象、推理、建模如数概念的形成和发展是数与代数中的重要内容,从整数、小数、分数到有理数的学习,是一个从具体事物抽象为数的过程教学中应结合具体教学内容的学习,把抽象体现在该过程中,培养抽象思维能力 4 )基本活动经验:数学基本活动经验的积累要和过程性目的建立联系如 《 标准( 2 0 2 3 )版》规定, “ 经历数与代数的抽象、运算与建模等过程,掌握数与代数的基础知识和基本技能;经历图形的抽象、分类、性质讨论、运动、位置拟定等过程,掌握图形与几何的基础知识和基本技能;经历在实际问题中收集和解决数据、运用数据分析问题、获取信息的过程,掌握记录与概率的基础知识和基本技能这些过程性目的和内容实现的重要标志是学生形成活动性经验, 在经历数学活动中,了解数学知识发生发展的过程,体会数学知识和方法的探究。
1、知识技能:( 1 )过程性目的①经历代数、抽象与建模过程②经历图形的抽象、分类、性质探讨、运动、位置拟定等③经历在实际问题中收集和解决数据、运用数据分析问题、获取信息的过程( 2 )结 果 性 目 的 ( 知识技能)( 四个学习领域) :①掌握数与代数( 抽象、运算、建模)②图形与几何( 图形的抽象、运动、性质、位置拟定)③记录与概率的基础知识和基本技能( 数据的收集、整理、描述、分析)④综合实践:解决问题的数学活动经验( 积累综合运用数学知识解决数学问题的经验)【 评价重点:结果一一了解、理解、掌握、应用;过程一一经历、体验、探索 】2、数学思考:目的:( 1 )建立符号意识( 2 )初步形成几何直观和运算能力( 3 )发展形象思维和抽象思维:数感、符号意识、空间观念、几何直观( 4 )发展数据分析观念,感受随机现象:分析过程+ 记录方法+ 随机现象( 5 )发展合情推理和演绎推理能力,清楚表达地自己的想法:观测、实验、猜想、证明、综合( 6 )学会独立思考,体会数学的基本思想和思维方式3、问题解决( 角度、方法、意识)( 1 )初步学会从数学的角度发现和提出问题;( 2 )运用数学知识解决问题,获得分析问题和解决问题的一些基本方法( 3 )体验解决问题方法的多样性,发展创新意识和应用能力( 4 )学会与别人合作交流( 5 )初步形成评价与反思的意识4、情感态度( 课堂观测、活动记录、课后访谈)( 1 )积极参与数学活动,对数学有好奇心和求知欲;( 2 )在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心。
3 )体会数学的特点,了解数学的价值:提高学习数学的爱好,增强学好数学的信心,养成良好的数学学习习惯 4 )养成认真勤奋、独立思考、合作交流、反思质疑等学习习惯态度:积极参与、信心培养、体会价值习惯:独立思考、合作交流、评价反思、实事求是初中是第三学段:知识技能、数学思考、问题解决、情感态度( 1 )知识技能:①经历数与代数抽象、 运算与建模等过程, 掌握属于代数的基础知识和基本技能②经历图形的抽象、分类、性质探讨、运动、位置拟定等,掌握图形与几何的基础知识和基本技能③经历在实际问题中收集和解决数据、运用数据分析问题、获取信息的过程,掌握记录与概率的基础知识和基本技能④参与综合实践活动, 积累综合运用数学知识、 技能和方法等解决简朴问题的数学活动经验 2 )数学思考:①建立数感、符号意识和空间观念,初步形成几何直观和运算能力,发展形象思维和抽象思维②体会记录方法的意义,发展数据分析观念,感受随机现象③在参与观测、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理能力,清楚地表达自己的想法④学会独立思考,体会数学的基本思想和思维方式 3 )问题解决:①初步学会从数学的角度发现和提出问题,综合运用数学知识解决实际问题;②获得分析问题和解决问题的一些基本方法, 体验解决问题方法的多样性, 发展创新意识和应用力:③学会与别人合作交流;④初步形成评价与反思的意识。
4 )情感态度:①积极参与数学活动,时数学有好奇心和求知欲;②在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心③体会数学的特点,了解数学的价值④养成认真勤奋、独立思考、合作交流、反思质疑等学习习惯,形成实事求是的科学态度三、总体目的和学段目的的关系( 1 )总体目的和学段目的总体目的是通过整个义务阶段数学学习之后, 应当达成的最终目的 是实现义务教育阶段数学课程教师的最重要途径总体目的的达成要分阶段贯彻,而每个阶段性的目的就是学段目的即总体目的是义务教育阶段数学课程的终极目的,学段目的则是总体目的的细化和分段化 2 )总体目的的四个方面总体目的由知识技能、数学思考、问题解决、情感态度四个方面体现密切联系,互相交融的有机整体一方面,知识技能不能作为终极目的;另一方面,数学思考、问题解决、情感态度的达成应以数学知识技能和方法作为载体因此,只有这四个方面目的的整体实现,才是学生受到良好数学教育的标志 3 )过程性目的和结果性目的既关注过程,也关注结果许多结果目的的实现,需经历过程性目的环节,概念的形成是有过程的第三章初中数学课程的内容标准数学各部分内容的重难点提醒,四大领域:一 、数与代数该部分的内容涉及数的概念、数的运算、数量的估算;字母表达数、代数及其运算;方程、方程组、不等式、函数等。
实数部分内容重要涉及:有理数、无理数概念、形式与运算;代数式:代数式的概念、性质和基本运算;方程与方程组:基本概念,一元一次、一元二次、一元一次方程组;不 等 式 ( 组 ) :不等关系,一元 一 次 不 等 式 ( 组 ) ;函数:概念,一元一次函数、反比例函数、一元二次函数 二、图形与几何:图形的性质、图形的变化、图形与坐标 1 )图形的性质点、线、面,相交线和平行线,三角形、四边形、多边形、圆、尺规作图,视图与投影,基本证明的基础( 9个基本领实,即公理)①两点拟定一条直线②两点之间线段最短③过一点有且只有一条直线与这条直线垂直④两条直线假如被第三条所截,假如同位角相等,那么两条直线平行⑤过直线外一点有且只有一条直线与这条直线平行⑥两边夹角( 全等)⑦两角夹边( 全等)⑧三边相等( 全等)⑨两条直线被一组平行线所截,所得相应线段成比例 2 )图形的变化:轴对称、平移、旋转、中心对称、相似 3 )图形与坐标:拟定物体位置的要素、表达物体位置的基本方法、直角坐标系、图形变化的坐标表达三、记录与概率记录的核心是数据分析 1 )数据分析过程:经历收集、整理、描述和分析数据的活动,了解数据解决的过程,能用计算器解决较为复杂的数据。
( 2 )数据分析方法:收集数据方法( 调查、实验、测量、查阅) ;整理、描述、分析数据的方法( 频数、频率,直方图、折线图;中位数、众数;极差、方差;平均数)( 3 )数据的随机性两层含义,一方面对于同样的事情每次收集到的数据也许是不同的;另一方面有足够的数据就也许从中发现规律四、实践与综合( 一 ) 实践与综合课程领域与其他三个领域有着明显的不同, 是以问题为载体,学生积极参与的学习活动功能:积累活动经验,培养数学的应用意识和创新意识从学习对象而言:没有引入新的内容,但是强调数学知识的整体性和应用性,注意数学的现实背景以及与其他学科之间的关系;从学习目的而言:较少关注最终获得的具体结果,而更强调关注过程;从学习方式而言:追求一种基于个人思考的“ 合作交流” 二)实践与综合的课程内容:( 1 )发现问题与提出问题的能力:可以从一些已知现象( 涉及数学的、非数学的) 、数学探究活动的过程和活动过程中发现进一步的问题 2 )探究的能力与方法:可以有效使用观测、实验、归纳、类比等方法探究一 个 现 象 ( 对象)中存在的数学规律或结论,可以借助已有的知识和方法分析问题 3 )抽象的能力:可以分析不同背景问题情境中蕴含的数学本质特性,并且用适当的数学符号、模型表达相应的数学关系、数学规律。
( 4 )合作交流的能力:可以了解别人对问题的想法、可以清楚、准确地表述自己对问题的理解和见解,可以与别人共同寻求解决问题的思绪( 三 )实践与综合的课程实行要点:①突出重点② 强 调 “ 综合应用”③以探索为主线( 四)实践与综合课程本质上是一种解决问题的活动,在解决问题的过程中,重要的是培养学生独立思考、 自主探索、合作交流的能力规定:( 1 )规定学生积极、积极地参与到活动中,并且在尝试寻找“ 答案”时,不是简朴地应用已知的信息,而是对信息进行加工,重新组织若干已知的规则( 或条件) ,形成新的高级规则,用以达成目的 2 )教师充足尊重学生的自主性,涉及对问题的理解、解决问题的基本思绪等 ,以利于其创新意识的发展,同时,更为关注对学生数学思维方法、数学能力的培养第四章:初中数学课程教学建议第 一 节 《 课标》中的数学教学建议一、数学教学活动要注重课程目的的整体实现义务教育阶段数学教学的主线目的是促进学生的整体发展, 这样的发展不仅在于帮助学生获得数学的知识技能,更应当促进他们在知识技能( 的理解和掌握) 、数学思考、问题解决、情感态度四个方面的整体协调发展学生学习应当是一个生动活泼的、积极的和富有个性的过程。
认真听讲、积极思考、动手实践、自主探索、合作交流等都是学习数学的重要方式学生应当有足够的时间和空间经历观测、实验、猜测、计算、推理、验证等活动过程教师教学应当以学生的认知发展水平和已有的经验为基础, 面向全体学生, 注重启发式和因材施教 教师要发挥主导作用, 解决好讲授与学生自主学习的关系,引导学生独立思考、积极探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,获得基本的数学活动经验二、重视学生在学习活动的主体地位 1 )学生获得知识,掌握技能必须建立在自己思考的基础上学生只有积极积极参与教学活动,才干在数学思考、问题解决、和情感态度方面得到发展( 2 )学生的发展是教师制定教学活动计划的出发点和落脚点,也是实行教学活动的终极目的( 3 )教师是学生学习活动的组织者、引导者和合作者组织性体现在:①准确把握教学内容和学生实际,拟定教学目的,设计良好的教学方案.②选择合适的教学方法,形成有效学习活动引导性体现在:从学生熟悉的生活中取材,创建有助于自主学习的情境,引导学生思考,促进学生活泼、生动地学习可以:①创设丰富有趣的数学情境;②充足发挥课堂教学作用;③加强知识的应用。
合作性体现在:以平等、尊重态度鼓励学生参与 4 )解决好学生主体地位和教师主导作用的关系,解决好讲授与学生自主学习的关系1 )学生主体:知识+ 思 考 ( 接受或探索) ;技能+ 实践;数学思考、问题解决、情感态度+ 亲身参与2 )教师主导:组织者= 优质教学方案( 内容+ 教学实际)+ 有效学习活动( 方法、引导、课堂氛围) ;引导者= 情境创设( 丰富、合理、有趣)+ 课堂教学+ 知识运用;合作者= 平等、尊重+ 启发+ 共同探索三、注重学生对基础知识、基本技能的理解和掌握 1 )在数学知识的教学过程中,注重学生对所学知识的理解,体会数学知识之间的关联, 已学生的结识发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教 2 )在基本技能的教学中,不仅要使学生可以按照程序实行操作,还要使学生理解程序的环节、道理 3 )感悟数学思想,积累数学活动经验数学思想蕴涵在数学结识形成、发展和应用的过程中,是数学知识和方法在更高层次上的抽象与概括,如归纳、演绎、抽象、转化、分类、模型、数形结合、随机等①合理创设情境;②引导学生自主探索 独立思考、合作交流;时间控制合理;空间适度;适时归纳,拓展思绪;鼓励思考一困难)( 4 )情感态度:关注学生情感态度的发展。
5 )合 理 把 握 “ 综合与实践”的实行 合理把握= 问题选择+ 展开过程+ 参与方式+ 合作交流+ 活动过程和结果的展示第二节教学中应当注意的几个关系一、“ 预设”和 “ 生成”的关系 教 学 方 案 ( 理解、钻研、再发明)+ 方案实行 ( 新的资源要引导、调整)教学方案是教师对教学过程的“ 预设” ,实行教学方案,就 是 把 “ 预设”转化为实际的教学活动在这过程中,教师互动往往会“ 生成” 一些新的教学资源,这就需要教师及时把握,因势利导,适时调整预案,使教学达成更好效果二、面向全体学生与关注学生个体差异的关系 困 难 生 ( 解决、鼓励参与、信心培养)+ 学 有 余 力 生 ( 材料、思绪、阅读空间)学习有困难的,要给予关注,鼓励参与,及时肯定,耐心引导,增长信息提供足够材料和思维空间,发展数学才干三、合情推理与演绎推理的关系义务教育阶段要注重学生思考的条理性,不要过度强调推理的形式四、 使用现代信息技术与教学手段多样化的关系 现代信息技术的作用不能完全替代原有教学手段, 其价值在于实现原有的教学手段难以达成甚至达不到的效果第五章 初中数学课程评价建议 ( 目的多元方法多样)一、评价要点:①目的:全面了解学生数学学习的过程和结果,激励学生学习和教师改善教学②目的:以课程目的和内容标准为依据,体现数学课程的基本理念③内容:评价学生在知识技能、数学思考、问题解决、情感态度等方面的表现④侧重点:既要关注学生的学习结果, 更要关注学生在学习过程中的发展和变化⑤方式:多样+ 恰当呈现+ 激励。
采用多样化的评价方式,发挥评价的激励作用⑥通过评价得到的信息, 可以了解学生数学学习达成的水平和存在的问题, 帮助教师进行总结与反思,调整和改善教学内容和过程二、数学学习评价的重要方式:口头测验、书面测验、开放式问题研究、活动报告、课堂观测、课后访谈、课内外作业、成长记录袋等教学评价功能:管理、导向、诊断、调控、激励分类:时间或目的= 诊断+ 形成+ 终结;价值= 相对+ 绝对+ 个体内差异:评价人员= 内部+ 外部;教育对象= 教学工作者+ 学生+ 教材+ 教学手段;分析方法= 定性+ 定量要点:目的+ 内 容 ( 对、易、方法渗透)+ 教 法 ( 多种方法结合)+ 心理环境( 气氛、师生关系)+ 教师行为( 是否是一个好的引导者、组织者、合作者) + 学生行为( 是否成为学习的主体= 参与、思考、合作、交流、评价)三、学习评价实行建议:( 1)基础知识和基本技能的评价( 2 )数学思考和问题解决的评价( 3 )情感态度的评价( 课堂观测、活动记录、课后访谈)( 4 )注重对学生数学学习过程的评价( 学生在数学学习过程中的整体发展是数学学习评价的核心)( 5 )体现评价主体的多元化和评价方式的多样化( 6 )恰本地呈现和运用评价结果( 7 )合理设计与实行书面测验模块三:教学知识第一章数学教学原则和方法第 一 节 教 学 原 则1、抽象与具体相结合的原则在数学教学中既要促使学生通过各种感官去感知数学的具体模型, 形成鲜明的表象,又要引导学生在感知材料的基础上进行抽象思维,形成对的的概念、判断和推理。
因素:学生认知规律+ 数学高度抽象性学生认知规律:从感知到理解,从表象到概念;生动直觉一区分研究对象共性和特性f理性结识数学高度抽象性: 研究对象是空间形式和数量关系, 表现形式是纯粹的数学的量 ,广泛使用的是抽象符号如何贯彻该原则:1)观测能力培养: 感知数学模型,形成鲜明表象;2)抽象思维、概括能力培养: 形成对的概念、判断和推理2、严谨性和量力性相结合原则概念:严谨性= 论证过程严密,叙述结论精确,知识成严谨逻辑系统;量力性= 量力而行,按思维水平,接受能力,理解能力安排教学,使其逐步适应 如何贯彻该原则:教材研读= 教材标准、 目的及严谨性规定过程推动= 概念、定理教学逐层逐步推动习惯培养= 言必有据、思考缜密、思绪清楚学生分析= 年龄、个性、智力、能力等,因材施教3、理论与实践相结合原则理论与实践相结合,既是结识论与方法论的基本原理,又是教学论中的一般原理本质:理论知识= 阐明要联系实际+ 理解要参与实际活动贯彻此原则的因素数学特点= 高度抽象性+ 逻辑系统严密( 环环相扣) + 应用广泛提高能力= 分析问题+ 解 决 问 题 ( 将实际问题转化成数学问题)4、巩固与发展相结合原则本质:发展的过程中巩固+ 巩固的前提下向前发展贯彻此原则的因素:1 )数学实际教学特点:逻辑系统严密,断节影响整体,不能简朴累加,在知识与知识的有机联系中巩固发展,进行能力培养。
2 )学生心理发展规律= 心理发展趋势( 连续不断继承性+ 产生质变的阶段性)+ 心理发展动力( 已有的知识、智力水平或结构[ 前提] 、新的动机和需要[ 发展的动力] )第 二 节 教 学 方 法教学方法是指在教学活动中,“ 为达成教学目的,完毕教学任务,实现教学内容,运用教学手段而进行的,在教学原则指导下的,一整套方式组成的,师生互相作用的活动”教学方法不同于教学工具或手段,它是教法与学法的互相联系与作用,体现了教学活动的双边性一、讲授法:教师讲解系统、概括、重点突出、富有逻辑性与启发性,而学生以观测、思考、聆听、记笔记等手段进行接受( 受)式学习优点:教师主导、时间可控且短、知识连贯性、流畅性较好 缺陷:教与学分离 ( 学生理解、掌握及能力培养)二、讨论法四个优点:( 交流表达、合作学习、爱好、批判精神及言必有据的习惯)( 1 )彰显学生是学习的主体( 2 )学生之间互相启发,取长补短( 3 )可以培养学生的学习爱好( 4 )可以培养学生的批判精神与言必有据的良好习惯局限性:( 时间、话题、结果不可控)容易使讨论陷于松散,不易控制讨论的话题与讨论的结果,时间也不容易把握三 、自学辅助法。
过程:①通过思想动员,使学生肯自学;②教会学生阅读,使学生能自学;③加强指导,培养学生会自学;④重启发,促使学生爱自学特点:充足发挥学生学习的自主性、自觉性和独立性四、发 现 法 ( 布鲁纳) 发 现 学 习 ( 创设情境一激发、探索问题解法、完善一总结思绪、知识结构)( 智力、爱好、发现解决问题、巩固)过程:①创设问题情境,激发学生学习的积极性和积极性;②寻找问题答案,探讨问题解法;③完善问题解答,总结思绪方法;④进行知识综合,充实和改善学生的知识结构优势:( 1 )可以提高学生的智慧潜力( 2 )使学生的学习动机由外在向内在转移( 3 )使学生学会发现的探究方法( 4 )有助于学生记忆知识缺陷:时间、知识不系统,不容易把握,教师驾驭能力规定高,运用不好会影响教学质量五、谈话法谈话法的重要优点是突出教学的双边活动, 有助于保持课堂的活跃气氛, 有利教师及时了解学生学习的情况,有助于促进学生积极思考、努力进取,有助于提高学生数学语言的表达能力由于学生回答问题的时间难以事先预知, 所以谈话法重要的局限性是时间不易掌 握 ( 控制) ,运用不好会影响教学计划的完毕选择教学方法总的原则是启发式。
重要考虑以下因素:①初中阶段的课程目的②教学内容的特点③教学条件④学生的实际情况⑤教学方法的特点,将各种教学方法有机地结合起来教学方法的选择1 :教学方法的选择要考虑初中阶段的课程目的2 :教学方法的选择要考虑教学内容的特点3 :教学方法的选择要考虑教学条件4 :教学方法的选择要考虑学生的实际情况5 :教学方法的选择要考虑教学方法的特点,将各种教学方法有机地结合起来第二章数学概念的教学概念是反映事物的本质属性和特性的思维形式第一节:重要概念教学的基本规定1 、使学生明确概念的内涵、外延,熟悉概念的表达2 、使学生了解概念的来龙去脉,可以对的地运用概念3 、使学生了解概念间的关系,会对概念进行分类,从而形成概念体系第二节概念教学的一般过程概念教学过程大体分为四个环节:引入、明确、巩固与运用1 、概念的引入:( 1 ) 以学生的感性认知为基础引入概念( 2 ) 在学生已有知识基础上引入概念( 3 ) 从现实生活、生产的需要引入概念2 、明确概念:( 1 ) 明确概念的内涵,准确地给概念下定义( 2 ) 明确概念的外延,对的地给概念分类( 3 ) 明确概念的表达以及限制条件3 、巩固概念:( 1 ) 当堂巩固( 2 ) 及时复习,整理所学概念,将概念纳入概念体系中4 、应用概念:灵活运用第三章数学命题的教学第一节重要命题教学的基本规定1、使学生深刻理解数学命题2、使学生了解命题的来龙去脉,可以灵活运用命题解决问题3、使学生了解相关命题之间的内在联系,掌握命题的系统第二节:命题教学的一般过程一、公理的教学( 引入、明确、巩固和运用) 公理教学的重点是使学生明确公理引入的必要性和其真实二、命题的教学过程1 . 引入命题:(1 ) 组织学生动手实践,观测并总结出猜想( 2 ) 组织学生演算和推理,然后归纳出猜想( 3 ) 组织学生画直观图形,分析图形结构的出猜想( 4 ) 组织学生回顾概念的定义,用简朴推理获得猜想(5 ) 组织学生回顾命题,对其推广或限制获得猜想2 . 证明命题3 . 明确命题4 . 巩固命题:( 1 ) 当堂巩固( 2 ) 及时复习,整理所学命题,建立命题间的广泛联系5 . 应用命题第四章数学教学过程和学习方式第 一 节 教 学 过 程一、数学教学过程( - )备课:( 三备:备数学课程标准、备数学教材、备学生)①分析教材和课程标准、阅读参考资料②进一步了解学生。
教师进一步了解学生,才干有的放矢、因材施教③ 制 定 计 划 ( 学期计划、单元计划和教案)( -)课 堂 教 学 ( 明了、联想、系统和方法)五段教学法:( 1 )引 入 ( 提出问题、说明目的) ,( 2 )讲 解 ( 讲解新课程、教材) ,( 3 )联 系 ( 比较) ,( 4 )总结,( 5 )应用1、课堂教学的五大环节:①组织教学②复习提问③讲授新课④巩固新课⑤布置作业2、中学数学教学过程中的几种关系:①间接经验和直接经验的关系②数学知识技能的掌握和能力发展的关系, 数学知识技能的掌握和数学能力的发展是互相促进的关系③数学知识技能的掌握和数学观形成的关系④数学认知活动与非认知因素的关系⑤教师主导作用与学生主体性的关系发展学生数学能力的外部条件: 发挥教师的主导作用可以使学生迅速有效地学习数学知识、技能和思想方法;提高学生数学学习的效率的内在因素:学生数学学习的积极性( 三 )课外作业:①作业批改②课外( 四)数学课外活动( 五)教学评价:①成绩考核的目的与作用,②成绩考核的类型,③命题与评分二、数学教学过程的基本要素:教师、 学生和教学中介( 涉及教学目的、 内容、 方法、 组织形式及环境等要素)第二节:数学学习的概念一、数学学习特点:( 1 )学习内容是严谨、高度抽象和广泛应用的数学知识、数学技能和数学思想方法、数学是抽象概念的、判断互相联系的科学结识的统一体( 2 )除学习基本数学知识、技能、和思想方法外,更为重要的学习如何进行数学思维,思维能力发展是数学学习的主线性目的,即学会如何思维。
二、影响数学学习的基本因素:( 1 )内因影响数学学习的内因有学生的数学学习动机、爱好、学习的努力限度等非认知因素,已有数学知识水平、能力水平、数学记忆力、思维能力、学习能力、数学元认知能力等认知因素2)外因影响数学学习的外因有数学学习内容、教师、学习方式、环境等外在因素第二节中学数学学习方式1、接受学习和发现学习( 探究性学习)2、合 作 学 习 ( 有明确的责任分工的互助性学习)3、自主学习4、示 例 学 习 ( 例中学和例中做的统称)模块四 教学技能第 一 章 数 学 教 学 设 计第 一 节 教 学 设 计 概 述一、教学设计的内涵:根据数学学习论、数学课程论、数学教学评价理论和数学方法论等理论的基本观点与主张,依据课程目的规定,运用系统科学的方法,对教学的要素( 教师、学生、教育中介)进行分析,从而拟定数学教学目的,设计解决数学教学问题的教学活动模式与工作流程,提出教学策略方案和评价方法 ,并最后形成设计方案的过程它具有规划性、超前性、发明性和可操作性等特点二、教学设计的基本规定:(1)充足体现数学课程标准的基本理念,努力体现以学生发展为本( 2)适应学生的学习心理和年龄特性( 3 )重视课程资源的开发和运用( 4 )注重预设和生成的辩证统一( 5 )辩证结识和解决教学中的多种关系( 6 )整体把握教学活动的结构第二节教学目的的阐明教学目的是教学设计的路标,重要有三大功能:( 1 )学生学习的目的;( 2 )教师拟定教学范围、教学内容、教学重点、选择教学策略( 教学方法、教学组织形式、教学顺序、教学活动程序和教学媒体等)的指导;( 3 )评价的依据1 、界定课堂教学目的的依据:课堂教学目的应根据教学设计的前期分析( 即课程教学目的、学生特性和学习内容的分析结果来拟定)( 1 )从课程目的切入( 知识技能、数学思考、问题解决、情感态度四个方面考虑)( 2 )从学生特性切入( 一般特性、初始能力和学习风格)( 3 )从学习内容切入2 、描述课堂教学目的的基本规定( 1 )具 体 ( 2 )多 元 ( 3 )层 次 ( 4 )可 行 ( 5 )发展3 、阐述教学目的的A B C D 法四个要素: 教学对象( A u d i e n c e )行 为 ( B e h a v i o r )条 件 ( C o n d i t i o n )和标准 ( D e g r e e )第三节教学内容的拟定1 、学习内容分析( 1 ) 整体分析学习内容( 2 ) 进一步剖析学习内容,中学数学教材在编排上有两条主线:一是数学基础知识;二是数学思想方法( 3 ) 精心编选典型题目( 4 ) 准确把握教学重点( 5 ) 对的估计教学难点对中学数学整体而言,有五大难关:①用字母表达带来的抽象性,以及由代数方法代替算术方法的思绪改向;② 由代数到几何的过渡, 研究对象由数到形的转变, 研究方法由计算为主到推理论证为主的转变③由常量数学到变量数学的过渡,辩证因素的引入④由有限到无限的过渡,辩证思维有了更高的规定⑤由必然到或然的过渡, 思维习惯和思维方法的改变( 就中学数学内容的局部而言,新概念、新方法一般都为难点)教学设计工作一、教材内容分析:( 1 ) 整体系统的观念用教材( 2 ) 理解教材的编排意图( 3 )突出教材的重点和难点。
对中学数学整体而言,有五大难关:①用字母表达数带来的抽象性以及由代数方法代替算术方法的思绪改向②由代数到几何的过渡, 研究对象由数到形的转变, 研究方法由计算为主到推理论证为主的转变③由常量数学到变量数学的过渡,辩证因素的引入④由有限到无限的过渡,辩证思维有了更高的规定⑤由必然到或然的过渡, 思维习惯和思维方法的改变 就中学数学内容的局部而言,新概念、新方法一般都为难点二、学情分析:( 1 )分析学生原有的认知基础( 2 )分析学生的个体差异( 3 ) 了解学生的生理、心理( 4 ) 了解学生对本学科学习方法的掌握情况( 5 )分析学习知识时也许要碰到的困难三、制定教学目的四、考虑教学方法五、教学媒体的使用六 、教学实行过程分析七 、教学反思八、教学设计的撰写:( 1 )教学目的a .知识与技能b .过程与方法c .情感、态度与价值观( 2 )学情分析( 3 )教材分析a .本节的作用和地位b .本节的重要内容c .重点、难点分析d .课时规定( 4 )教学理念( 5 )教学策略( 6)教学环境( 7 )教学过程( 8 )目的检测作业( 9 )教学反思第三节教学策 略 的 拟 定1、教学方法的选用2、教学媒体的运用3、教学程序的安排( 1 )按数学课类型拟定教学程序①概念学习应遵循学生认知心理规律的四个发展层次: 感觉一一知觉一一观念 ( 表 象 ) 一一概念概念新授课一般程序: 引入概念、感知概念、建立概念、巩固概念、归纳小结、布置作业② 复习课( 一个阶段的复习) 作用:系统归纳、整理阶段所学的知识、方法以及梳理知识方法所反映的数学思想,沟告知识、方法之间的联系,形成所学数学内容的整体结构。
复习课是以知识立意为主的课,同事兼顾能力培养③ 复习课基本程序:复习目的,知识框架、典型例题、 达标练习、 巩固练习、发展练习、归纳小结、布置作业讲评课是针对某一次考试或某一阶段作业的结果进行重点讲和评一般程序:总体介绍、典 型 讲 评 ( “ 好 ”的典型介绍,“ 错 ”的典型分析) 、 引申练习、归纳小结、概括总结、布置作业( 2) 按教学模式拟定教学程序数学教学模式均有以下构成① 指 导 思 想 ② 教 学 目 的 ③ 操 作 程 序 ④ 师 生 角 色 ⑤ 教 学策 略 ⑥ 评 价 体 系引导发现教学模式是依据杜威、布鲁纳等人所提倡的“ 问题一假设一推论一验证” 程序, 并结合我国的一些教育工作者的教学成果归纳而成的一种教学模式,该模式以解决问题为中心,注重学生探究活动,着眼于发现问题和解决问题能力的培养,其重要的教学目的是培养学生的探究能力和创新意识探究学习教学模式实质上是将科学领域的探究引入教学,让学生以类似或模拟科学研究的方式进行学习,即以然就学习为主的教学模式,它的心理学基础是现代认知心理学、奥苏贝尔的故意义学习理论、建构主义心理学教育要注重培养学生的创新精神和实践能力,必须以学生的发展为本,必须为学生的终身发展服务等理念为探究学习教学模式提供了教育学的依据。
探究学习教学模式通常要经历七个基本阶段:① 提 出 问 题 ② 猜 想 与 假 设 ③ 制 定 计 划 ④ 进 行 实 验 与 收 集 证据 ⑤ 分 析 与 论 证 ⑥ 反 思 与 评 价 ⑦ 表 达 与 交 流教学方案的撰写教学方案( 教学计划)就是教学设计最终形成的实践性的教学文本,涉及学期 ( 学年)教学方案,单元教学方案,课时教学方案等一、教案的构成要素( 1 )教 学 目 的( 2 )教 学 内 容( 3 )教师活动( 4 )学 生 行 为( 5 )教 学 媒 体( 6 )时间分派二、教学分析1 .教学目的:涉及知识与技能+过程与方法+情感态度与价值观2 .学 情 分 析 ( 可根据规定撰写)= 认知基础+方法+个体差异+困难3 .教材分析:涉 及 作 用 、地位+重要内容+重点难点二、教学过程设计( 一般附加设计意图)1 .创设情境2 .提出问题3 .例题应用4 .归纳小结第二章 教学实行 导入+提问+有 效 教 学 ( 教法)+结 束 ( 用于案例分析)一、课堂导入技巧:①直接导入法:( 开门见山说目的)= 迅速定向+了解轮廓+状态②复习导入法:( 旧迁新)= 减少认知难度( 摸清水平、交点精确)③事例导入法: ( 特殊到一般,具体到抽象) = 触类旁通+亲切感④趣味导入法:( 趣味知识) = 不平铺直叙,引人入胜,从无意到故意⑤悬念导入法:( 悬念问题) =" 要我学”到 “ 我要学”,悬中寓实⑥类比导入法:( 相同或类似属性)= 简明快捷,调动思维积极性二、课堂提问技巧:( 1 )八大原则: a . 目的性b . 启发性c . 适度性d . 爱好性e . 循序渐进性f . 全面性 g . 充足思考性h . 及时评价性( 2 )七大提问类型。
a . 复习、回忆提问= 检查复习+强化现有学习b . 理解提问= 一般( 复述)+进一步( 改变信息结构)+对 比 ( 异同)c . 应用提问= 运用知识解决问题( 一般、灵活)d . 归纳提问= 猜想数学结论和证明方法e . 比较提问= 结识数学本质f . 分析、综合提问= 化整为零,再综合,提高解决问题能力g . 评价提问= 理由、方法、结论的优劣进行评价三、有效数学教学:( = 符合知识本质+ 学习规律+ 多为目的)5大环节:问题和情境+ 初始问题设计+ 解决问题过程( 强调学生参与+ 设计问题串)+ 学生活动+ 反思活动5 大教学方法一一学习方式( 如何进行+ 优缺陷评价)( 1 )站在系统的高度设计教学a . 数学知识的本质规定b . 学生学习规律的规定c . 多维教学目的的规定( 2 )有效教学设计的环节a .问题和情景b .初始问题的设立c .解决问题的过程d .学生活动e .反思活动四、课堂结束技能:必要性:完善原有认知结构+ 过渡( 1 )方法1 )练习法( 练习题/ 作业) :巩固运用+ 信息反馈2 )比较法和归纳法:比 较 出 “ 本质”( 准确、 清楚) ,归 纳 出 “ 脉络” ( 重点、难点、一般规律、知识结构)3 )提问法和答疑法:提问能修补,答疑重启发,提 问 记 三 点 ( 重点、难点、要点) ,答疑要调控4 )承上法和启下法:承上豁然开朗,启下强烈欲望。
爱好)5 )发散发和拓展法:发散拓展合用面,拓展开发知识面 2 )注意的问题a .自然贴切,水到渠成b .语言精炼,紧扣中心c .内外沟通,全面开拓五、现代信息技术教学技能:( 1 )优越性a .有助于学生学习积极性的提高b .有助于问题的探索和发现c .有助于课堂教学质量的提高( 2 )注意事项a .多媒体的辅助性b .多媒体对教学内容的选择性c .多媒体使用过程中的适时性第三章教学测 量 与 评 价应建立目的多元、方法多样的评价体系评价既要关注学生学习的结果,也要重视学习的过程;既要关注学生数学学习的水平,也要重视学生在数学活动中所表现出来的情感与态度,帮助学生结识自我、建立信心一、 目的( 1 )鉴定和诊断数学教学的效果( 2 )调节学生的学习与教师的教学( 3 )督促和激励师生继续努力二:一般程序( 1 )测量与评价数学教学的准备阶段①数学教学评价的指标体系( 数学教学是一个复杂的活动, 所以常用一个指标体系来评价它)②数学教学评价指标体系的建立各评价指标的目的性, 规定指标体系中的各指标可以作为标准的尺度, 如评价学生的数学学习时,评价指标体系要能反映数学教学目的的规定各指标之间的独立性, 规定尽也许得保持指标体系中诸指标的独立性, 减少指标间的彼此相关或部分包含关系整个指标体系的完备性, 规定整个指标体系对于评价标准来说, 具有全面评价的意义可测性, 说明诸指标是可以直接测量的。
拟定指标体系的权值也是建立指标体系的一项重要工作③测量数学教学的方法( 测验法、观测法、谈话法( 又称访谈法) 、问卷法等)( 2 )数学教学测量和评价实行阶段分两步:预测与正式施测( 3 )整理与分析测量的结果( 4 )对数学教学进行评价~ •、教学评价的功能:①管理功能②导向功能③调控功能④激发功能二、教学评价的分类:( 1 )根据评价在何时进行以及通过评价达成如何的目的,可以把评价分为诊断性评价、形成性评价和终结性评价 2 )根据评价的价值标准可分为相对性评价、绝对性评价、个体内部差异评价 3 )根据评价人员的不同可分为内部评价和外部评价 4 )按数学教育系统中的对象可以分为对教师教学工作的评价、对学生学习的评价、对数学教材的评价和对数学教学手段的评价 5 )按照评价分析方法可以分为定性评价和定量评价三、 数学课堂教学评价要素: ①教学目的②教学内容③教学方法④教学心理环境⑤教师行为⑥学生行为⑦教学效果四、数学教学评价指标体系:建立一个评价指标体系时,要考虑各评价指标的目的性;指标之间的独立性;整个指标体系的完备性、可测性;指标体系的权值等问题五、数学课堂教学评价方法:①观测法②访谈法③问卷法六、数学学习评价:( 1 )对不同类型的数学学习目的的评价a . 数学双基( 基本知识与基本技能)b . 数学学习过程和方法c . 情感、态度和价值观( 2 )数学学习评价方法a . 测验法( 效度、信度、难度、区分度)b . 观测法c .数学日记d . 成长记录袋。
