好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

高三数学一轮复习教案全套人教A版数列求和.doc

9页
  • 卖家[上传人]:博****1
  • 文档编号:410736879
  • 上传时间:2023-06-16
  • 文档格式:DOC
  • 文档大小:132KB
  • / 9 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 高三 一轮复习 5.4 数列求和【教学目标】1.熟练掌握等差、等比数列的前n项和公式.2.掌握非等差、等比数列求和的几种常见方法. 3.能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题.【重点难点】 1.教学重点 识别数列的等差关系或等比关系,并能用相关知识解决相应的问题;2.教学难点学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;【教学策略与方法】自主学习、小组讨论法、师生互动法【教学过程】教学流程教师活动学生活动设计意图环节二考纲1.熟练掌握等差、等比数列的前n项和公式. 2.掌握非等差、等比数列求和的几种常见方法. 3.能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题.真题再现;1.(2015·全国Ⅱ,16)设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则Sn=____________.解析 由题意,得S1=a1=-1,又由an+1=SnSn+1,得Sn+1-Sn=SnSn+1,因为Sn≠0,所以=1,即-=-1,故数列是以=-1为首项,-1为公差的等差数列,得=-1-(n-1)=-n,所以Sn=-. 答案 -2.(2013·全国Ⅱ,3)等比数列{an}的前n项和为Sn.已知S3=a2+10a1,a5=9,则a1=(  )A. B.- C. D.-解析 设公比为q,则由S3=a2+10a1,得a1+a2+a3-a2=10a1,故a3=9a1,所以q2=9.由a5=9,得a1=. 答案 C知识梳理知识点 数列求和的常见方法1.公式法;直接利用等差数列、等比数列的前n项和公式求和(1)等差数列的前n项和公式Sn==na1+d.(2)等比数列的前n项和公式Sn=2.倒序相加法;如果一个数列{an}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.3.错位相减法;如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n项和可用错位相减法.4.裂项相消法;(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(2)裂项时常用的三种变形①=-;②=;③=-.5.分组求和法;一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.6.并项求和法;一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如an=(-1)nf(n)类型,可采用两项合并求解.例如,Sn=1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.1.必会结论;常用求和公式前n个正整数之和1+2+…+n=前n个正奇数之和1+3+5+…+(2n-1)=n2前n个正整数的平方和12+22+…+n2=前n个正整数的立方和13+23+…+n3=22.必知联系;(1)直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.(2)在应用错位相减法时,注意观察未合并项的正负号;结论中形如an,an+1的式子应进行合并.(3)在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.考点分项突破考点一分组转化法求和1.已知数列{an}的前n项是3+2-1,6+4-1,9+8-1,12+16-1,…,3n+2n-1,则其前n项和Sn=________.【解析】 由题意知an=3n+2n-1,∴Sn=a1+a2+…+an=3×1+21-1+3×2+22-1+…+3n+2n-1=3×(1+2+3+…+n)+21+22+…+2n-n=3×+-n=+2n+1-2.【答案】 (3n2+n)+2n+1-22.(2015·福建高考)等差数列{an}中,a2=4,a4+a7=15.(1)求数列{an}的通项公式;(2)设bn=2an-2+n,求b1+b2+b3+…+b10的值.【解】 (1)设等差数列{an}的公差为d,由已知得解得所以an=a1+(n-1)d=n+2.(2)由(1)可得bn=2n+n,所以b1+b2+b3+…+b10=(2+1)+(22+2)+(23+3)+…+(210+10)=(2+22+23+…+210)+(1+2+3+…+10)=+=(211-2)+55=211+53=2 101. 归纳分组转化法求和的常见类型1.若an=bn±cn,且{bn},{cn}为等差或等比数列,可采用分组求和法求{an}的前n项和.2.通项公式为an=的数列,其中数列{bn},{cn}是等比数列或等差数列,可采用分组求和法求和.提醒某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.考点二 裂项相消法求和(1)(2015·江苏高考)设数列满足a1=1,且an+1-an=n+1(n∈N*),则数列前10项的和为______.(2)(2015·全国卷Ⅰ)Sn为数列{an}的前n项和.已知an>0,a+2an=4Sn+3.①求{an}的通项公式;②设bn=,求数列{bn}的前n项和.【解析】 (1)由题意有a2-a1=2,a3-a2=3,…,an-an-1=n(n≥2).以上各式相加,得an-a1=2+3+…+n==.又∵a1=1,∴an=(n≥2).∵当n=1时也满足此式,∴an=(n∈N*).∴==2.∴S10=2×=2×=.【答案】 (2)①由a+2an=4Sn+3,(*)可知a+2an+1=4Sn+1+3.(**)(**)-(*),得a-a+2(an+1-an)=4an+1,即2(an+1+an)=a-a=(an+1+an)(an+1-an).由an>0,得an+1-an=2.又a+2a1=4a1+3,解得a1=-1(舍去)或a1=3.所以{an}是首项为3,公差为2的等差数列,通项公式为an=2n+1.②由an=2n+1可知bn===.设数列{bn}的前n项和为Tn,则Tn=b1+b2+…+bn=++…+=.跟踪训练 1.若已知数列的前四项是,,,,则数列的前n项和为________.【解析】 由前四项知数列{an}的通项公式为an=,由=知,Sn=a1+a2+a3+…+an-1+an===-.【答案】 -2.(2014·大纲全国卷)等差数列{an}的前n项和为Sn,已知a1=10,a2为整数,且Sn≤S4.(1)求{an}的通项公式;(2)设bn=,求数列{bn}的前n项和Tn.【解】 (1)由a1=10,a2为整数,知等差数列{an}的公差d为整数.又Sn≤S4,故a4≥0,a5≤0,于是10+3d≥0,10+4d≤0.解得-≤d≤-.因此d=-3.数列{an}的通项公式为an=13-3n.(2)bn==.于是Tn=b1+b2+…+bn=++…+-==.归纳常见的裂项方法(其中n为正整数)数 列裂项方法(k为非零常数)===-=(-)(a>0,a≠1)loga=loga(n+1)-logan 考点三 错位相减法求和1. (2015·山东高考)设数列{an}的前n项和为Sn.已知2Sn=3n+3.(1)求{an}的通项公式;(2)若数列{bn}满足anbn=log3an,求{bn}的前n项和Tn.【解】 (1)因为2Sn=3n+3,所以2a1=3+3,故a1=3.当n≥2时,2Sn-1=3n-1+3,此时2an=2Sn-2Sn-1=3n-3n-1=2×3n-1,即an=3n-1,所以an=(2)因为anbn=log3an,所以b1=,当n≥2时,bn=31-nlog33n-1=(n-1)·31-n.所以T1=b1=;当n≥2时,Tn=b1+b2+b3+…+bn=+[1×3-1+2×3-2+…+(n-1)×31-n],所以3Tn=1+[1×30+2×3-1+…+(n-1)×32-n],两式相减,得2Tn=+(30+3-1+3-2+…+32-n)-(n-1)×31-n=+-(n-1)×31-n=-,所以Tn=-.经检验,n=1时也适合.综上可得Tn=-.跟踪训练1.已知等差数列{an}的前3项和为6,前8项和为-4.(1)求数列{an}的通项公式;(2)设bn=(4-an)qn-1(q≠0,n∈N*),求数列{bn}的前n项和Sn.【解】 (1)设等差数列{an}的公差为d.由已知得解得故an=3+(n-1)·(-1)=4-n.(2)由(1)得,bn=n·qn-1,于是Sn=1·q0+2·q1+3·q2+…+n·qn-1.若q≠1,将上式两边同乘以q有qSn=1·q1+2·q2+…+(n-1)·qn-1+n·qn.两式相减得到(q-1)Sn=nqn-1-q1-q2-…-qn-1=nqn-=.于是,Sn=.若q=1,则Sn=1+2+3+…+n=.所以Sn=归纳 1.要善于识别题目类型,特别是等比数列公比为负数的情形.2.在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn-qSn”的表达式.3.在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.规范解答错位相减法求数列的和1.(12分)已知数列{an}的前n项和Sn=-n2+kn(其中k∈N*),且Sn的最大值为8.(1)确定常数k,并求an;(2)求数列的前n项和Tn.【规范解答】 (1)当n=k∈N*时,Sn=-n2+kn取得最大值,即8=Sk=-k2+k2=k2,故k2=16,k=4.当n=1时,a1=S1=-+4=,3分当n≥2时,an=Sn-Sn-1=-n.6分当n=1时,上式也成立,综上,an=-n.(2)因为=,所以Tn=1+++…++,①7分所以2Tn=2+2++…++,②②-①得2Tn-Tn=2+1++…+-=4--=4-.11分故Tn=4-.12分【解题程序】 第一步利用Sn的最大值为8,结合k∈N*求出k的值;第二步利用an,Sn的关系求出an;第三步化简数列;第四步利用错位相减法求Tn;第五步化简整理得出答案.【智慧心语】 易错提示(1)利用Sn求an时不要忽视n=1的情况.,(2)错位相减时不要漏项或算错项数.防范措施(1)利用Sn求an时,an=Sn-Sn-1成立的条件是n≥2,解题时要明确.2)根据数列前n项和的结构特征和最值确定k和Sn,求出an后再根据的结构特征确定利用错位相减法求Tn.在审题时,要审题目中数式的结构特征判定解题方案.3)Tn的结果要尽量简单,可以通过n=1,2时的特殊情况对结论进行验证.。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.